
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A245 738
IilIIll 111111 111 II

DTIB LECTrEIFL

Oa'
THESIS

THE SHORTEST PATH PROBLEM IN THE PLANE WITH
OBSTACLES: BOUNDS ON PATH LENGTHS AND SHORTEST

PATHS WITHIN HOMOTOPY CLASSES

by

Andre' M. Cuerington

June, 1991

Thesis Advisor: J. R. Thornton

Approved for public release; distribution is unlimited

92-03288
III!(i 11111ill 111 1 ill (Ult ll li ii

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS
Unclassified

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution is unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate School

53

6c. ADDRESS (City, State, andZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ba NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
Progrdm Element No Project No f,.. No Work Unit Acceuson

Number

11. TITLE (Include Security Classification)

THE SHORTEST PATH PROBLEM IN THE PLANE WITH OBSTACLES: BOUNDS ON PATH LENGTHS AND SHORTEST PATHS WITHIN
HOMOTOPY CLASSES
12. PERSONAL AUTHOR(S) Andre M. Cuerington

13TYPE OF REPORT 13b TIME COVERED 114. DATE OF REPORT (year, month, day) 15. PAGE COUNT

Master's Thesis IFrom To June 1991 118
16. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the ofscial policy or position of the Department of Defense or the U.S.
Government.

17 COSATI CODES 18 SUBJECT TERMS (continue on reverse if necessary andidentify by block number)
-FIELD GROUP SUBGROUP Path Planning, Finding the Shortest Path in the Plane With Obstacles

19 ABSTRACT (continue on reverse if necessary and identify by block number)

The problem of finding the shortest path between two points in a plane containing obstacles is considered. The set of
such paths is uncountably infinite, making an exhaustive search impossible. This difficulty is overcome by reducing
the size of the search space. The search is first restricted to a countably infinite set by focusing attention on the set
of homotopy classes. By applying simple optimality principles, we obtain a finite list of such classes whose union
contains the shortest path. This process of simplification is discussed in the thesis of CAPT Kevin D. Jenkins, U.S.
Marine Corps. In this thesis we first discuss a computational investigation of two methods by which homotopy
classes can be named. Next, a computational heuristic is presented that finds the lower bound for a path in a class.
Finally, the true shortst path is found by searching these classes in order of increasing lower bound. One application
of this study is in the area of robotic path planning.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
El U(CLASSIIED'UrIMTL[L, a SAME AS R[PORT 3 DC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area code) 22c OFFICE SYMBOL
J. R. Thornton (408) 646-2741 MaJTh

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete Unclassified

Approved for public release; distribution is unlimited.

The Shortest Path Problem in the Plane With Obstacles:
Bounds on Path Lengths and Shortest Paths

Within Homotopy Classes

by

Andr6 M. Cuerington
Captain, United States Army

B.S., United States Military Academy, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED MATHEMATICS

from the

NAVAL POSTGRADUATE SCHOOL
June, 199:

Author: ___

An 6 M. Cuerington

Approved By:Approved By:R. Thornton, Thesis Advisor

Kim A.S;- = , Se oo (t der

Harold M. Fredricksen, Chairman,
Department of Mathematics

ii

ABSTRACT

The problem of finding the shortest path between two

points in the plane containing obstacles is considered. The

set of such paths is uncountably infinite, making an

exhaustive search impossible. This difficulty is overcome by

reducing the size of the search space. The search is first

restricted to a countably infinite set by focusing attention

on the set of homotopy classes. By applying simple optimality

principles, we obtain a finite list of such classes whose

union contains the shortest path. This process of

simplification is discussed in the thesis of CAPT Kevin D.

Jenkins, U.S. Marine Corps. In this thesis we first discuss

a computational investigation of two methods by which homotopy

classes can be named. Next, a computational heuristic is

presented that finds the lower bound for a path in a class.

Finally, the true shortest path is found by searching these

classes in order of increasing lower bound. One application

of this study is in the area of robotic path planning.

Accession For

T) T ;' Q

I! r.r... .

iii ..DDit .

vi , {{

THESIS DISCLAIMER

The reader is cautioned that computer programs developed

in this research may not have been exercised for all cases of

interest. While every effort has been made, within the time

available, to ensure that the programs are free of

computational and logic errors, they cannot be considered

validated. Any application of these programs without

additional verification is at the risk of the user.

iv

TABLE OF CONTENTS

I. INTRODUCTION.....................1

A. THE PROBLEM..........................1

*B. OVERVIEW OF THE SOLUTION.............1

C. THE APPROACH...................2

1. The Topology.................2

2. Establishing the Naming Convention 3

3. Generation of Names for Candidate Equivalence
Classes...................4

4. Heuristic Ordering of Candidate Homotopy
Classes...................4

5. Class by Class Solution of the Shortest Path
Problem..................5

D. SUMMARY....................5

E. THE CONTRIBUTION.................6

I. NAMING EQUIVALENCE CLASSES..............7

A. INTRODUCTION...................7

B. CONSTRUCTION OF REFERENCE FRAME..........8

C. RAW CHARACTER STRINGS...............9

D. ALGORITHM 1...................10

II.A COMPUTATIONAL INVESTIGATION............13

A. INTRODUCTION..................13

B. ALGORITHM 2...................13

1. Fundamental Group..............13

2. Functions in Algorithm............17

a. Side Array................17

v

b. Switch Function 17

c. Index Function 17

d. The Algorithm 18

e. Fundamental Group Cancellation
Function 19

C. THE COMPUTATIONAL INVESTIGATION 20

1. The Approach 20

2. The Test 21

IV. DETERMINING A BOUND FOR A HOMOTOPY CLASS 24

A. INTRODUCTION 24

B. FINDING THE BOUND 27

1. Establishing a Cone of Directions 27

2. Class Names Defining Cones 27

3. Intersecting Multiple Cones 28

4. An Empty Intersection 31

C. THE ALGORITHM 33

V. FINDING THE SHORTEST PATH 35

A. INTRODUCTION 35

B. FINDING LINE SEGMENTS 36

C. DETERMINING THE CORRECT TANGENT LINES 41

1. Point to Obstacle 41

2. Obstacle to Obstacle 42

D. TWO POTENTIAL PROBLEMS TO CHECK 49

VI. CONCLUSIONS AND RECOMMENDATIONS 56

A. CONCLUSIONS 56

B. RECOMMENDATIONS FOR FURTHER STUDY58

vi

APPENDIX A. FORTRAN PROGRAM...............60

APPENDIX B. A SHORT EXAMPLE..............102

LIST OF REFERENCES....................108

INITIAL DISTRIBUTION LIST.................109

vii

ACKNOWLEDGMENTS

I fully acknowledge the assistance I received from Dr.

John Thornton, Naval Post School Mathematics Department, and

CAPT Kevin D. Jenkins, U. S. Marine Corps. The tremendous

support of these two professionals was critical during my

effort to complete this thesis.

Dr. Thornton's staunch guidance inspired the motivation to

start this work and the determination to finish it. In

addition to other technical assistance, Dr. Thornton

established topological proofs which support the theories

behind the algorithms presented in Chapters II and III.

Much of the research for this project was conducted in

conjunction with the thesis research of CAPT Jenkins. We

spent many months together writing and debugging the FORTRAN

program which is presented in Appendix A. Following the joint

research and development of the shortest path problem, Chapter

I (with the exception of minor changes) was written by CAPT

Jenkins for inclusion in this thesis.

I extend much thanks to these two individuals.

viii

I. INTRODUCTION

The industrial community relies today, in increasing

measure, upon robots to handle a multitude of tasks. A need

remains to develop robots, and fixed robot arms, with the

ability to roam freely among obstacles. In this regard, the

calculation of shortest paths is of obvious importance.

A. THE PROBLEM

As robot arms move, they must vary their configurations to

position their end-effector or "hand". Once obstacles are

introduced, freedom of movement of the manipulator may become

drastically reduced. The problem considered here is one of

finding the shortest path from a starting point to a

destination point in a planar region containing obstacles.

This paper addresses several parts of the solution to this

problem.

B. OVERVIEW OF THE SOLUTION

Between any two points in the plane, a path joining them

may be chosen from an uncountably infinite set of

alternatives. It is desirable to choose the shortest path

from this set which, due to the presence of obstacles, may not

be a straight line. An exhaustive search of the collection of

possible paths is impossible, so another method must be

developed.

The set of possible paths is partitioned into a collection

of equivalence classes--mutually exclusive subsets which

collectively exhaust the partitioned set. This partition is

induced when an equivalence relation is defined on the set of

possible paths. This set of equivalence classes is countably

infinite.

Naming conventions are established which associate with

each class a character string which allows the classes to be

represented in a computer.

Next, a finite list of candidate classes is produced to

search.

A heuristic is then applied to this finite list of classes

to place them in an order which saves computational effort.

The final step begins with this ordered list of candidate

classes and solves the shortest path problem class by class in

listed order. Savings of computational effort are realized

when the class-by-class solution process can terminate without

exhausting the ordered list of candidate classes.

The key ideas in the above overview are now considered in

somewhat greater detail.

C. THE APPROACH

1. The Topology

Let P be the uncountably infinite set of all

continuous, ob-tacle-avoiding paths from a starting point to

a destination point, denoted a and z respectively. If p. and

2

pj are two paths in P, which have the same starting point and

destination point, we say that pi is homotopic to p2 if pi can

be mapped to p, under a continuous function (with both

endpoints fixed in place) without encroaching on any obstacles

[Ref. 1:p. 223]. Clearly, the homotopy relation is reflexive,

symmetric and transitive and therefore defines an equivalence

relation [Ref. 1:p. 223]. This relation induces a partition

of P into a countably infinite collection of equivalence

classes, known as homotopy classes [Ref. 1:p. 223].

2. Establishing the Naming Convention

In order to name homotopy classes, a reference frame

is established to represent the topological relationships in

the plane with obstacles. For a given path, p, a string of

characters, P(p), is recorded which encodes information

concerning the relationship of the path to the obstacles.

Two algorithms are then presented which accept R(p) as

input. These algorithms have the following important property

which implicitly defines names for the homotopy classes: If

p; and p. are coterminal paths and R(pi) and R(p.) are input to

either of the two algorithms, then the outputs are identical

if and only if p1 is homotopic to pj [Ref. 2].

Chapter III presents a computational investigation

which closely examines the methods employed by these two

algorithms to produce the names for these homotopy classes.

3

3. Generation of Names for Candidate Equivalence Classes

An edge-labeled graph is constructed which models the

topological relationships within the region, where the nodes

represent subregions induced by the reference frame. Nodes

are connected if their ccrresponding subregions are adjacent.

The names of the desired homotopy classes may be obtained by

traversing this graph. This traversal produces a list of

candidate classes which contain all paths of minimal length.

The location of the origin affects the manner in which

the plane is divided into wedges. In this regard, the graph

which is created, given the location of the origin in one

instance, may not be the same as the graph obtained if the

origin is moved to a new point.

4. Heuristic Ordering of Candidate Homotopy Classes

For each class on the list, a lower bound on the

length of its shortest representative path is constructed.

The list of classes is then arranged into increasing order of

these bounds. To obtain the bounds, a point is first chosen

within each obstacle. A contraction deformation is then be

applied to each obstacle to "shrink" the obstacle to that

chosen point.

Now some class is fixed and its shortest path is

examined. As ali obstacles are simultaneously contracted to

their representing points, this shortest path has a limiting

position which is polygonal. The length of this polygonal

path is the lower bound which is associated with that class.

4

This length can be calculated from the class name and the

representing points without explicitly defining any

contractio deformation. This thesis presents this method to

determine a bound for the shortest path in a given class.

5. Class by Class Solution of the Shortest Path Problem

In the final step of the solution, the classes on the

ordered list of candidates are considered. The first class is

removed from the list--that class with the smallest associated

bound. The true shortest path in the named class is found by

reversing the contraction previously applied to the obstacles,

thereby transforming the polygonal path whose length provided

the lower bound into the true shortest path. If the length of

this path is smaller than the bound associated with the class

on the top of the remaining list, the search is stopped.

Otherwise, the first class is removed from that remaining list

and the procedure is repeated. This procedure, which is

contained in the thesis, continues until the condition

specified above is met, and the shortest path has been found.

D. Summary

The solution to the problem of searching for the shortest

path between two points in the plane with obstacles begins

with consideration of a set of paths which is uncountably

infinite. Through the homotopy relation, this set is reduced

to a countably infinite set. The new set is further reduced

to a finite list by modeling the region with a graph and

5

applying an optimality principle. This final list contains

only those homotopy classes containing paths which are not

self-crossing. From this list a shortest path is found.

Computational effort is further reduced through the use of

a heuristic which orders the list of candidate classes by

increasing order of their lower bounds. The heuristic used

also facilitates a methodical search of the classes while

solving the shortest path problem. The use of this heuristic

does not, however, imply that the solution is approximate.

The solution to the problem will be exact using this method.

E. THE CONTRIBUTION

Chapter II of this thesis presents the methods used to

establish a reference frame given the plane with obstacles and

an algorithm which is used to generate the homotopy class name

of a given path.

Chapter III presents a computational investigation which

addresses the question of whether or not two algorithms which

are used to name homotopy classes actually provide the same

results.

Chapter IV introduces a method to find a lower bound for

the shortest path in a class.

Chapter V shows how to find the true shortest path in a

class.

6

II. NAMING EQUIVALENCE CLASSES

A. INTRODUCTION

In this chapter, a labelling scheme is established to

represent the equivalence classes. This notation is used

throughout the paper to organize the computational search for

the shortest path.

An algorithm is presented that for a character

representation of a path, p, names the path's respective

equivalence class. It can be shown that, after being

processed by the algorithm, different character

representations of paths p. and p. yield the same output

exactly when and only when the two paths are in the same

equivalence class [Ref. 2]. Thus, the name of a class will be

the string obtained by applying the algorithm to any

representative in the class.

The computation of class names depends on a reference

frame which in turn depends on a collection of obstacles.

Although more than one reference frame can be drawn for a

particular collection of obstacles, the choice of a particular

frame fixes the representation of all homotopy classes.

Once a reference frame is developed, the name of the

homotopy class for a path can be determined by a two-step

procedure. First, a character string R(p) is calculated which

encodes certain information about the path taken through the

7

obstacles. Second, this character string is accepted as input

to an algorithm which then produces a name for the equivalence

class to which the particular path belongs. This algorithm

produces the class names in terms of the same alphabet used to

create the initial character string. The results from the

algorithm described, Algorithm 1, are used throughout this

analysis as the class name associated with a given path.

B. CONSTRUCTION OF REFERENCE FRAME

Let bk be an arbitrary point in obstacle Bk, k = 1,2 n,

where n is the number of obstacles in the region. A point c

is chosen and a line drawn through each bk, infinite in extent

in each direction and having the following properties: there

is an open disk, 6, centered at c such that 6 nBk=0 for all

k:1,. .. n, and the n lines connecting c with the points bk are

distinct. Such a point c can always be found as the above two

conditions are satisfied by any point in the planar region

that is neither on an obstacle nor on the n(n-l)/2 lines

determined by pairwise choices of distinct bk.

To draw a reference frame, the n lines are first

constructed joining c with each bk. The line from c to bk is

labeled as Lk. Each line is then partitioned into two

directed, semi-infinite rays and one finite length line

segment. The ray directed from c in the direction away from

bk is called ak . The ray emanating from bk and away from c is

denoted Bk. The remaining line segment, [c,bk], is also

8

denoted ak. The reference frame is the collection of line

segments and rays so constructed, as illustrated in Figure

2.1.

Figure 2.1 A Reference Frame With n2 Obstacles

C. RAW CHARACTER STRINGS

A reference frame is fixed in a region T. Let a and z be

points in T and let p be a directed path in T from a to z.

Then the raw string of p, denoted R(p), is defined to be the

ordered sequence of characters obtained by following p from a

to z and recording, in order, the names of the rays that are

crossed.

Two special cases must be addressed so as to make the

above definition complete. First, in the case that p crosses

no reference rays, we let R(p) = e, where e denotes the empty

string. Second, if p crosses through c (simultaneously

9P

crossing all a.) the names of all a- will be recorded in order

of increasing subscript.

Thus, raw strings are of the form

R(p) x x... x

where each x, belongs to the alphabet

A e {, a~, f Ck .. a , ,. .,B

The character x, (j 1, 2,..., m) is the name of the jth

reference ray crossed by p. Figure 2.2 shows a pair of paths

connecting the two points a and z in the region with two

obstacles.

a 2 a 1

Figure 2.2 Paths a43, and aick

D. ALGORITHM 1

Algorithm 1 accepts as input a raw string R(p) for any

path p in T and any reference frame. The output is a string

denoted C(R(p)) of characters also chosen from the alphabet A.

10

This output string C(R(p)) is the name of the homotopy class

to which p belongs.

The algorithm is presented in terms of two functions. The

first is the sorting function a. Let S = x,. . x be any string

over A. If S contains a two character substring xkXk 1 = ckea

with i<j, then o(S) is the string which results by reversing

the order of the leftmost such substring. Figure 2.3 depicts

two such strings and makes clear that such paths are

homotopic. If S contains no such two character substring,

then a(S) = S.

Ze

2 a

Figure 2.3 Homotopic Alpha Strings alck and akak

Repeated application of o sorts all substrings that

consist entirely of Ca's into non-decreasing order of

subscript. Z(S) is defined to be the string which results

when this sorting is complete.

The second function is the cancellation function X. If

string S contains a two character substring Xxk+l with x. = xk+ !

11

then X(S) is the string which results by removing the leftmost

such two character substring. Otherwise X(S) = S. Such

cancellation is intuitive, for a reference ray that is crossed

twice consecutively is equivalent to one that is not crossed

at all. Thus repeated application of X cancels all pairs of

adjacent like occurrences of identical characters. Let X(S)

be defined as the string which results when all such possible

cancellation is complete.

With these definitions complete, Algorithm 1 is given in

Figure 2.4.

begin
k -0
Sk -R(p)WHILE Sk not equal to X(Z(Sk))

k k+1Sk X(Z(Sk.))
END WHILE
C(R(p)) - Sk
END

Figure 2.4 Algorithm 1

The output from Algorithm 1, C(R(p)), is called the

canonical representation of p and is the unique name for the

homotopy class of p [Ref. 2]. That name is used throughout

this paper.

12

III. A COMPUTATIONAL INVESTIGATION

A. INTRODUCTION

This chapter describes a computational investigation which

was conducted as an aid to verifying that the homotopy class

names produced by Algorithm 1 are equivalent to those produced

by a known method of naming homotopy classes [Ref. 2].

A second algorithm, Algorithm 2, is introduced here to

forge a link between the class names of Chapter II and the

well-known fundamental group. Two processes are presented to

exploit this link: If Algorithm 1 truly names the classes,

then both procedures should produce the same output for every

path tested. One million test cases were examined and no

counter-examples were found. While this computational

evidence is not a proof, it did provide initial support before

the proof of the claim that Algorithm 1 names homotopy classes

was found.[Ref. 2]

B. ALGORITHM 2

1. Fundamental Group

The class name obtained from Algorithm 1 was written

in terms of the alphabet A defined in Chapter II. We present

an algorithm here where the name obtained is expressed in

terms of the fundamental group of a topological space T.

13

The basic idea for producing a fundamental group for

this problem is to regard the paths in T as elements of the

group and path concatenation (*) as the group operation.

There are two problems with considering the paths as the group

elements. First, it is not necessarily possible to

concatenate any two paths in T. In order to concatenate two

paths using the operation (*), the first path must end at the

point where the second begins. In this analysis the test

paths all begin and end at the point a. This point is called

a base point and concatenation is possible for every pair of

paths.

A second issue is that an inverse is not well defined

for paths. If the identity is defined as the empty string,

i.e., stay at the base point, then when a path and its inverse

are concatenated we have traced out a path which is not equal

to the identity. To avoid this problem, the homotopy classes

of paths are considered. Then all paths that have an empty

character string representation will be in the identity class.

Also, any class followed by its inverse will equal the

identity. In Figure 3.1, g, represents the class *l1I, and

(gi) "I represents the class 1B1l0. So, g, * (gl)' represents the

class a1Bia, which reduces to the identity class by the rules

of Algorithm 1.

The group elements, therefore, are homotopy classes of

loops around obstacles based at a common point and the group

14

operation is defined in terms of concatenation (*) of these

classes.

9i 1 Class al

Sc1 1Cci a) class 131a 1 e

Figure 3.1 A Homotopy Class and its Inverse

Given a base point a, we let p be any loop beginning

and ending at a. We let [p;] denote the homotopy class of p,.

So the set of group elements is {[pi] such that pi is a member

of T, where pi is a loop based at a}. This set will be called

G with the elements denoted g. Figure 3.2 illustrates

several paths and their homotopy classes given n=2 obstacles.

p

Figure 3.2 [P,] = [P2] [P 3]

15

Then the group operation (*) can be defined by

[p] * [q] = [pq].

It is important to note that the fundamental group is

finitely generated. As Figure 3.3 illustrates, the generators

are not unique. However, by fixing a set of generators, the

class names become fixed.

a

a

Figure 3.3 Alternate Generators For Fundamental Group of the
Space With Two Obstacles

With the above information describing the fundamental

group representation and a few necessary definitions,

Algorithm 2 is given below.

16

2. Functions in Algorithm

a. Side Array

Consider the reference lines Lk constructed in

Chapter II to be oriented rays with direction from c to bk. It

then becomes reasonable to discuss a 'right' and a 'left' side

of those lines. A moving point is allowed to trace a path p

from start point to destination point. Side(k) is a function

which defines the side of Lk on which the moving point lies.

The output is either 'left' or 'right'. The output is never

'on' because this routine is used only after a complete

crossing of Lk takes place. A crossing is considered to be

complete when the moving point leaves Lk to one side after

having met Lk from the opposite side.

b. Switch Function

The switch function is defined by:

I 'right' if side (k) = 'left'
switch (side(k)) = I

I 'left' if side (k) = 'right'

As the moving point traces p, each time a reference line Lk is

crossed, the switch function will be applied to indicate on

which side of Lk the moving point lies.

c. Index Function

Let xk be any character from the alphabet A

representing the kth element in R(p), Let index(xk) = j if xk

equals a, or 3-. Thus, the kth crossing completed by the moving

point is a crossing of L.. So if the moving point is on the

17

left side of L3 initially and this line is now crossed on

either side of b3, then side(3) would equal 'right'.

d. The Algorithm

Using the functions described above, Algorithm 2

is given in Figure 3.4. The algorithm works in two phases.

The first phase initializes the array side(k) for k = 1, ... n.

The second phase reads the raw string from left to right and

adds an element to the fundamental group representation for

each 13 crossing. When the end of the input string is reached,

the output is a shorter string with one character

corresponding to every 13 element in the original raw string.

Each character represents a generator or its inverse.

begin
input R(p) = x,. .. x,
for j = 1 ... ni

1-' a is to right of reference line L4 then
side (j) - right

el -
side (j) - left

end if
end for
G -[a]
for k = ... m

i = index(xk)
side(i) - switch(side(i))
if xk B=I for some r, then

if slde(index(xk)) = left, then
G - G *g i

else
- G * (gi)'

end if
end if

end for
F(R(p)) - G
end

Figure 3.4 Algorithm 2

18

e. Fundamental Group Cancellation Function

The cancellation rules in the fundamental group

differ somewhat from those for the raw string. Although sets

of generators are not unique, we can obtain a unique

representation of each class with respect to a particular set

of generators. For any given set of generators, every

homotopy class can be represented as a product of these

generators and their inverses. Even so, this representation

is only unique after cancellation is applied. The

cancellation rule follows.

Let G = {g1, .. , gn} be a set of generators of the

fundamental group of T (base point a) and let Y = y.Y2... y, be

a representation of some homotopy class in terms of the gj and

their inverses, i.e. for each i = 1,..., m, y= g= or

for some j,k = 1..., n.

The cancellation function K is defined as follows.

If Y contains a two character substring yiyi+1 with yi = (yi+l)-'

then x(Y) is the string which results by removing both yi and

Yi+', in their leftmost occurrence, from Y. Finitely many

repeated applications of K produce a string in which no

further cancellation is possible. We define this string as

K(Y).

19

C. THE COMPUTATIONAL INVESTIGATION

1. The Approach

A graphical representation of the two procedures is

provided in Figure 3.5. The investigation accepts a random

path p as input and generates two names for the homotopy class

representing p as output.

p

R(p)

A LG ZI A LG 2

C(R(p)) F(R(p))

ALG 2 K (F(R(p)))

F(C(R(p))) K(F(R(p)))

Figure 3.5 Flow Chart of Two Algorithms

The idea of the test is to determine for a given path

its raw string character representation. For computational

purposes, the paths considered are polygonal paths. The raw

string is then used as input to both algorithms.

20

The raw string R(p) is first input to Algorithm 2.

The output F(R(p)) from Algorithm 2 is then input to the

cancellation routine and the fully cancelled string K(F(R(p)))

is output. In parallel, R(p) is input to Algorithm 1 which

produces the canonical string C(R(p)). Algorithm 2 is then

applied to C(R(p)) to output F(C(R(p))). The results of these

tests are then compared. In Figure 3.5 a flow chart

illustrates this process. The program continues to compare

the two outputs until a predetermined number of paths are

checked.

It can be shown that C(R(p)) is a unique class name if

and only if F(C(R(p))) equals K(F(R(p))) for all p in

T [Ref. 2]. Before the proof of this conjecture was obtained,

the above procedures were programmed and successfully tested

for one million different paths.

2. The Test

The general algorithm used to test the two procedures

represented in Figure 3.5 is easily followed and is shown in

Figure 3.6. However, the attached program, which was used to

test the model, is substantially more involved. This more

involved program was written in an attempt to generate the

most efficient programming code possible.

21

n = number of reference frames to be considered
m = number of paths to be considered
nobs= number of obstacles on each board

begin
for board n1..., n

create reference frame or board
for path = 1..., n

1. Create a polygonal path p with nseg
segments

2. Form R(p)
3. Form F(R(p))
4. Form K(F(R(p)))
5. Form C(R(p))
6. Form F(C(R(p)))
if K(F(R(p))) does not equal F(C(R(p))) then

print (raw string, board, and path info
for the counter example)

end if
end for

end for
print (final seed)
end

Figure 3.6 Test Algorithm

Two time saving techniques are employed in order to

test the one million cases in 25 minutes. The first method

involves the subroutines which perform cancellation. It is

simple to code a program that scans the character

representation repeatedly to find all possible cancellation in

a string such as 8182" 1011 2, which reduces to 81 . However, in

the enclosed code (Appendix A), pointers are inserted in the

strings to mark the position where the first cancellation

occurs. Then the newly adjacent characters are checked for

possible cancellation. This method reduces the complexity of

the test and is employed in both Algorithm 1 and Algorithm 2.

22

The second time-saving device was developed around the

sorting of character strings. Instead of using a bubble sort

method (order n2 complexity), a merge sort algorithm (order

n(log(n)) complexity) is used. Table 1 shows the savings is

realized immediately as opposed to there existing some cut off

where n(ln(n)) becomes less expensive.

TABLE 1

COMPLEXITY COMPARISON

n n2 n(ln(n))

2 4 1
5 25 8
10 100 23
100 10,000 460
1,000 1,000,000 6,907
1,000,000 10E16 13,815,510

As can be seen in the attached code, this choice to

save computer time requires a significant increase in program

complexity and therefore in programmer time. The trade-off of

computer time versus programmer time needs to be considered in

any similar analysis.

The code used to implement the test is presented in

Appendix A.

23

IV. DETERMINING A BOUND FOR A HOMOTOPY CLASS

A. INTRODUCTION

For each homotopy class on a list, a lower bound for the

length of its shortest representative path is found. The list

is obtained through a graph traversal process [Ref. 3]. The

list of classes is then arranged in increasing order based

upon these bounds.

To obtain the bounds, we first fix a class and consider

its shortest path, p. For example, consider the path in

Figure 4.1 to be a string attached at z. The shortest path is

the one obtained by pulling the string tight so that it lies

against the obstacles and passes through "a".

1 1

a2 a a 1 2 a a1

Figure 4.1 Class Representatives

The topological deformation of "contraction" may then be

applied to each obstacle to "shrink" the obstacle to an point

24

bk which is chosen arbitrarily within the obstacle Bk [Ref. 4].

As seen in Figure 4.2, when all obstacles can be

simultaneously contracted to bk. The shortest path p' found

in this way has a limiting position which is polygonal.

bl 2

a2 1 2

Figure 4.2 Class Representative to a Bound for
the Shortest Representative

The length of this polygonal path provides a lower bound that

is associated with that class. The fact that this is a lower

bound follows from the following argument. If we let D be the

set of points through which paths may travel with full-sized

obstacles and E be the set of available points in the space

after the obstacles are "shrunk", then D is a subset of E.

Let fl(X, E) be the set of all paths in equivalence class X

which remains entirely in E. Since D is a subset of E, I(X,D)

is a subset of I(X,E) for all X. We now define a function f

that maps f(X,E) to a real number in R, with the rule that

25

f(p) = length of p. Since D is a subset of E, this equation

follows:

min f(p) min f(p) (Figure 4 3)
pell (X, E) pell(x,D)

This lower bound, minpf(X,E)f(P), can be calculated from the

class name and obstacle-representing points without explicitly

defining any contraction deformation.

f

Figure 4.3 Mapping Related to Class Lower Bound

Knowing that this polygonal path, p , exists, we now give

a method to find the minimum length path and compute its

length. Effectively, we must connect the points bk in the

correct order and compute the length of each line segment.

The idea employed to find p is: We are given a starting

point "a" and a character string which represents the

mandatory order of ray crossings. Each character of the

string implies that we must cross a certain ray. We then

compute the maximum number of rays (i.e. read the maximum

26

number of characters in the string) that can be crossed with

a straight line. If z cannot be reached with a straight line

we determine where it is best to make a turn. The turning

point then becomes the new starting point and the process

repeats until z is reached. To find the straight line

segments of p', the notion of a cone of directions in which

the segments of a polygonal p must lie is introduced.

B. FINDING THE BOUND

1. Establishing a Cone of Directions

The cone of directions as depicted in Figure 4.4, is

an open region--not including the boundaries--formed by two

rays based at a common point and forming an angle of less than

x radians. In this region we can draw any ray based at the

point common to the boundary rays. This is the cone of

directions.

Figure 4.4 Cone of Directions

2. Class Name Defines the Cone

To create a cone we need a starting point "a" and a

reference ray (Figure 4.5). We define an entire class name as

Ok for a path to cross the ray ak. First we draw a ray from

27

the starting point to the point representing the obstacle

point bk. In Figure 4.5, to cross ak we must be to the right

of the ray from a to bk. The ray from "a" to bk is one

boundary for the cone. Next we draw a ray parallel to the ray

that we must cross, a,K . Again in Figure 4.5, in order to

cross ak with a straight line we must leave "a" at an angle

that will allow us to cross the ak ray. Therefore, the ray

parallel to ek forms the other boundary. The two boundaries

form the cone of directions as any ray strictly lying between

these two limits will cross ak.

aK

starting -

point

Figure 4.5 A Cone of Directions Toward ak

3. Intersecting Multiple Cones

Given a cone of directions for a single ray, we can

then consider longer class name strings. For this we generate

an intersection of multiple cones of direction. For example,

in Figure 4.6, "a" is the starting point and the class is

2B133 leading to the ending point z.

28

a a
2I

Figure 4.6 The Class a2BlB2

The cone of directions in which the first segment of

p must lie is determined by considering the first element of

the class name. Therefore, the first cone must be in a

direction which crosses the a2 reference ray.

We draw a line from the starting point a to b2 and a

second line from "a" parallel to a2 and in the same direction

as a2 (Figure 4.7). This forms the cone of directions in

which the first polygonal line segment of the shortest

representative must lie.

B02

z

b2 e 1

a., aa

Figure 4.7 Cone of Directions Toward o

29

Then we consider the second character 31 and create

the cone of directions that will insure crossing of 3,. We

intersect the two cones of direction. The cone of

intersections is pictured in Figure 4.8.

z z

aa

new cone intersection

Figure 4.8 Two Intersecting Cones of Direction

Continuing in this fashion, in Figure 4.9, we consider the

third character in the class, 3 and create the appropriate

cone.

30

bi 2 z bib 2

2 C,

a 1

new cone empty
intersection

Figure 4.9 An Empty Intersection of Directions

We see that the intersection of these cones is empty.

To enter this new cone we are forced out of the cone in which

we know the first segment must lie. Therefore, we choose a

path which crosses all rays that were named (a2 and 1) and

turns on some bk. We determine the correct bk below.

4. An Empty Intersection

As can be seen in Figure 4.9, the new cone of

directions lies to the right of the previous intersected cone

of directions. This implies that the path we require will

bend to the right. The peg--point bk on which the path bends-

-is found on the right hand boundary of the old cone. In

fact, as shown in Figure 4.9, the obstacle centered at b, is

the peg that the path bends on in the class a,3,13.

31

We now know that one segment of the bounding path is

the line from a to b,. In the next step we use b, as the new

starting pc'nt. Since Q2 and 3, have been crossed, we use 31

to create the cone of directions in Figure 4.10.

JP22

z does not
lie in the cone

aI
2

Figure 4.10 Cone of Directions

Now, since there are no more characters to read, we

check to see if z lies within the most recently established

cone of directions. In Figure 4.10 we see that z does not lie

in the cone so the bounding path must bend again.

Since z lies to the right of the cone, the bounding

path bends on b2 which is on the right hand boundary of the

cone of directions. Hence, the final two segments of the

bounding path are the line segments between b, and b2 and the

line segment between b, and z.

So given the class a2,B.2 we obtain the bounding path

pictured in Figure 4.11 on the contracted obstacles.

Computing the length of this path is now straight forward.

32

The next section generalizes these steps and shows how

to find the path to z.

cx

b!

Figure 4.11 The Bounding Path for the Class otBJ3

C. THE ALGORITHM

To find a lower bound for a path in a given class, the

following algorithm is applied:

t(j) := an array of points with t(1)=a, and t(m)=z;
t(i+1) through t(m-1) are pegs visited along the
bounding polygonal path.

peg(i) "= the obstacle-representing point associated
with x

cone(t(j),xi):= the cone of directions from a starting
point t(j) in which we can cross the ray
x. with a straight line from t

U "= represents the cone associated with the most
recently read character

Vold: = records the most recent cone of intersections
V "= represents the cone of directions created by one

character; V is assigned to Void and is replaced by
the intersection of U and V0id

L,R : represent pointers into the character string X
and is associated with the obstacle on the left
of right boundary of the cone of directions. If
no boundary lies on a ray, then L or R is
assigned zero

L, R, associated with the obstacle on the left of right
boundary of the cone U that is intersected with
Vold. If one ray of U lies inside Vod, then either
L or R is replaced by L. or R . I both rays of
U lie inside V0! then L'and r, are replaced by Lu
and R, respectively.

33

BEGINt(1) <-- a; i<-
procedure START

read character xi
initialize current cone V <-- cone(t, xi)
IF peg(i) on left boundary of V THEN

L <--i; R<--0
ELSE

R <--i; L <--0
END IF

procedure CONTINUE
i <-- i+ 1; read character xi

U <-- cone(t, xi)
IF peg(x i) on left boundary of V THEN

LU <-- i; RU <-- 0
ELSE

RU <-- i; LU <-- 0

END IF
Vold <-- V; Lold <-- L; Rold <-- R

V <-- U r Vold
F left boundary of U falls within Vold THEN; L <-- LU; END IF
F right boundary of U falls within Vold THEN; R <-- RU; END IF

procedure BRANCH
F V is empty THEN

F U is to left of Vold THEN
j <-- j + 1; t (j)<--peg(Lold)

ELSE (U is to right of Vold)
j <-- j + 1; t (j)<-- peg(Rold)

END IF
go to procedure START

ELSE (V is not empty.)
IF i < m (not all characters have been read) THEN Go to procedure CONTINUE.
ELSE (There are no more characters to read.)

IF z lies in current cone V THEN j <-- j + 1; t(j) <-- z; STOP
ELSE

F U is to left of Vold THEN
j <-- j + 1; t(j) <-- peg(Lold); j <-- j + 1; to) <-- z; STOP

ELSE (U is to right of Vold)
j <--j + 1; t(j) <-- peg(Rold); j <-- j + 1; t(j) <-- z; STOP

END IF
END IF

END IF
END IF

END

34

V. FINDING THE SHORTEST PATH

A. INTRODUCTION

In order to find the true shortest path from a to z we

consider the classes of paths on the ordered list of candidate

paths. We proceed by removing the first class from the list.

The true shortest path in the named class is found. If the

length of this path is smaller than the bound associated with

the class on the top of the remaining ordered list, the search

is stopped. Otherwise, the first class is removed from the

remaining list and the above procedure is repeated. This

continues until the true shortest path is found.

To find the shortest path within a given class, we reverse

the contraction applied to the obstacles performed earlier

when we found the lower bound for the classes (see Figure

5.1). For each polygonal path, whose length provided a lower

bound, we transform the segment into the true shortest path in

that class. Accordingly, the process of calculating the

shortest path in a class begins with the polygonal path used

to lower bound it and a description of the obstacle

geometries.

35

P1 z 02 z1 Z 2

aa a

a 2 a1 a2A al1

Figure 5.1 Reversing the Obstacle Contraction

To this point, no assumptions have been made about the

shapes of the obstacles. In this chapter, with little loss of

generality and for computational purposes which will be

discussed later, all obstacles are assumed to be circles

centered on bk. We could, of course, assume other shapes,

like polygons or ellipses.

B. FINDING LINE SEGMENTS

As can be seen in Figure 5.2 the line segment from a to B1

is tangent to B,. Also, the line segment from B, to the

obstacle B2 is tangent to both obstacles. In general there

are two tangent lines from a point to a circle and there are

four distinct lines tangent between two circles (see Figure

5.2). In this section we see how to find these tangent lines

and we show how to pick the correct tangent line to represent

the true shortest path in the class.

36

Figure 5.2 Possible Tangent Lines

Assuming that the shortest path from a to z in a given

class of paths is not a straight line, we use another

application of the cone of directions idea to determine on

which side of an obstacle to turn. That is equivalent to

picking the correct tangent line. We use the last cone of

intersections formed just before the intersection of cones

becomes empty to make this determination.

In Figure 5.3 we see that the path is required to bend

around obstacle B1 . If a tangent line is drawn from a to the

left side of obstacle 1 and we then travel on an arc around

the obstacle until we can proceed directly to z, we would have

the shortest path in the class and could easily find its

length. If not then we iterate the process.

37

z

Figure 5.3 Path Bend in Class B1

The following method is used to find the tangent lines to

a circular obstacle when given the starting point, the

coordinates of the center of the obstacle, and the radius of

the obstacle.

In Figure 5.4, the starting point, a, is the point (u,v).

The center coordinates and the radius of the peg are the point

(h,k) and r, respectively.

y

2 2 (h, k)

r

(xl, Yl)

a (u,v)

Figure 5.4 Point to Obstacle Tangent Lines

38

With this information we determine the equations of the

circle representing the obstacle and an arbitrary line. We

solve these equations simultaneously for the points of

intersection (Figure 5.5). The specific value that we want is

the point of tangency.

Figure 5.5 The Intersections of a Circle and a Line

So, given h, k, and r and assuming, without loss of

generality, that b=u=v=O, we find the following two equations:

(x-h)' + (y-k)' = r'

y = mx (where m is the slope of the line)

By expanding the first equation and substituting y=mx we

obtain:

(1+m')x 2 + (2mk-2h)x + (h 2 +k'-r') = 0

By the quadratic formula we obtain:

x = -2mk+2h± [(2mk-2h) 2-4 (1 +m) (h2 +k2-r 2)]' ()

2 (1+m2)

In Equation (1), if the discriminant is zero, we have found

the value where the points of intersection coincide. So

setting the discriminant equal to zero yields:

39

(-2h-2km) 2 -4 (1+n#) (ha+ke-ar) =0

(h+km) I- (m+1) (h+k-r2) =0

(A$ni+2hkm+h2) - (mt +l) (h 2+k2-r') =0

(k'-h'-ke+rt) ne+ (2hk) m+ (r 2 -kg) =0

from which m can be determined.

A second application of the quadratic formula produces:

-2hk± [4hke-4 (r-h 2) (r 2-k2) I2 (r2-hm)

Mi= -hk±r [h+-r 2] 1 i=1,2

In general, with an arbitrary u and v

M (h-u) (k-v) ±r [(h-u) 2+ (k-b) 2-r2] %
=r 2 - (h-u) 2 , i=1,2

The only time this technique does not appear to work is

when the tangent line found is a vertical line (m is undefined

because there is a zero in the denominator). This problem can

be easily handled because if m is undefined we know the

equation for a vertical line to be x equal to some constant.

The value for m is then substituted into Equation (1) to

find the x,, i = 1,2, coordinate and the value of xi is

substituted into y, = mix, to find yi. By knowing on which side

of the obstacle the path must turn, we can pick the tangent

line with the appropriate slope. A method of picking the

correct line will be discussed in the next section.

40

We follow the arc along the circle to the point of

tangency of the line between the current obstacle and z or to

the point of tangency to the next obstacle. Tangent lines

between two obstacles can be determined by a similar method as

the one just shown. A method of finding the four tangent

lines between two circular obstacles follows.

C. DETERMINING THE CORRECT TANGENT LINES

1. Point to Obstacle

We have shown how to find the two tangent lines from

a point to a circle. We present a method to determine which

tangent line to pick.

The obstacle on which we turn lies on a boundary of

the cone of directions. Thus the cone itself lies either to

the left or to the right of the ray through the obstacle

center. If the cone lies on the left, use the tangent of the

left is taken. If the cone lies to the right, then the

tangent on the right is taken. The case with the cone on the

left is illustrated in Figure 5.6.

Figure 5.6 Use the Left Tangent for Path Bending to the Right

41

2. Obstacle to Obstacle

When considering two circular obstacles, there are

four distinct lines that can be drawn tangent to both

obstacles. In this section we show how to pick the tangent

line that corresponds to the respective shortest path in the

given class.

To find the four distinct tangent lines between two

obstacles we first create a line which is tangent to one of

the circles. We then move this tangent line along the circle

boundary until we discover the four points at which the line

is tangent to both obstacles (Figure 5.7).

y

x (y') = (r co (), r sin())
E, r

Sy = mx + b

Figure 5.7 Rotating i to Find Tangent Lines Between
Two Circles

42

Without loss of generality, in Figure 5.7 we fix one

obstacle center at the origin. We pick an arbitrary point

(x',y'), on the obstacle Bi represented as (r*cos(o),

r*sin()). We construct a line through (x',y') tangent to B1 .

The slope m of this line is:

y-r*sin ()
x-r*cos()

This slope is also equal to -cot(4). Hence,

M = y-r*sint = _cot ()) (2)
X-r*COS4(

The equation of the circle with center (h,k) is

(x-h) 2 + (y+k) 2 = R2

Rearranging Equation (2) we obtain the following:

y - r*sin(*) = (-cot(#)) (x - r*(cos(4))

y = (-cot(4))x + r*cos() *cot() + r*sin(4)

Equation (3) is in slope-intercept form and the y intercept b

is:

43

b = r*cos(*)*cot(4) + r*sin(*)

= r Cos + sine)

= r (cos2 + sin +)

b - r~csc()

Thus both m and b are functions of *. The general line that

we use to intersect both circles is

y = m(4)x + b()

This equation for the line and for the obstacle centered at

(h,k) are solved simultaneously. After steps similar to those

used in the point to obstacle example we obtain the following

formula:

(2+1). + (-2h+2m(b-k)]x + [h'+(b-k)'-I] = 0

Again by applying the quadratic formula and setting the

discriminant equal to zero we find

4[-h-m(b-k) - 4(m+i) [h+(b-k)2-R] =0

Substituting the function values for m(4) and b(#) yields

[-h- (coto) (r*csci-k)]2- (cot'+l) [h'+ (r*csc4-k) 2-RR] =O (4)

44

This equation has four zeros for values of i) in [0,2n)

as can be seen in Figure 5.8.

2-

[] E] C

03 0 030 o 0

0 0I1f -2 0[[]

0] 0

0 0]

0 03

0 2 3 4 5 6

Figure 5.8 Four Zeros of Equation (4)

Since 0 is the only parameter in Equation (4) we can

use the four values found to label the four tangent lines.

The line associated with the lowest value of oo is labeled A,

the second line associated with the second lowest (0 value is

labeled B and the last two lines are labeled with C and D,

respectively.

45

Y

DB

B

C

Figure 5.9 Possible Tangent Lines

Assuming the polygonal path bends on each peg on the

path, there are essentially two possible arrangements when

considering a polygonal path that negotiates two obstacles.

These possibilities are shown in Figure 5.10. The paths can

be flipped about the horizontal axis to produce two equivalent

paths.

Figure 5.10 Two Possible Polygonal Paths

46

In order to discover which situation exists, we extend

the middle line segment and use it as a reference in Figure

5.10. Since the path bends at each peg, the two end segments

must lie on one side or the other of the reference line. If

they both lie on the same side, then we have situation a

above. If the two segments lie on opposite sides, then we

have situation b.

Given the two possible arrangements in Figure 5.10, we

know the corresponding shortest paths in the class look like

those in Figure 5.11.

Figure 5.11 True Shortest Paths

We have shown how to pick the correct tangent line

from a point to a circle. This is applied to find the first

and last segments of this polygonal path.

To find the correct tangent between two obstacles,

following the situation on the left in Figure 5.11 we must

pick tangent line B, described earlier. If we have the other

situation in Figure 5.11, we must pick tangent line A.

If the polygonal path does not bend on each peg, then

there are two possible configurations as seen in Figure 5.12.

47

a. b.

Figure 5.12 Polygonal Paths With Collinear Segments

To this point, we only used the cone of directions

idea to find the correct tangent from a point to an obstacle.

We use the cone of directions information to pick the correct

tangent lines too.

As seen in Figure 5.13 we consider the class B1a2.

a1

- - - - - bound

true

a2 1

Figure 5.13 Class 1l,2 and its Bounds

The tangent line from a to B1 is found in the same

manner as discussed earlier. However, since the path of the

bound does not bend, we cannot choose the correct tangent line

between B1 and B, in the same way as before.

Instead, we construct a reference line that connects

the centers of the two obstacles. Then we consider on which

side of this line the cones of directions lie (Figure 5.14).

48

If they lie on different sides of the reference line then we

pick tangent line A or D. Otherwise, we pick tangent lines B

or C.

a Z

emQty
intersection

Figure 5.14 Cone of Direction to Help Pick Tangent Lines

D. TWO POTENTIAL PROBLEMS TO CHECK

Given a path in a class like the one in Figure 5.15, we

see the associated bounding path when we shrink the obstacles

to points. However, there are two separate problems that may

arise when the obstacles are restored to their original shape:

1) The prospective path may pass through one or more

obstacles. 2) When the obstacles are restored to their full

size the path created can switch sides of one or more

obstacles. These possibilities can be seen in Figure 5.16.

49

z
* z

Bb

5 4 the bounding I

C I-path ,b 4

B/
5

aa

Figure 5.15 A Class and Its Bounding Path

50

to 0

the bounding
path

/,'@$~iI
a a

Figure 5.16 A Bounding Path and Its Restored Path

The path determined by the cone of directions technique

passes through obstacles B1 and B5, illustrating the first

problem. By switching sides of B3, the path is no longer in

the same equivalence class, illustrating the second problem.

Actually, the path should look like the one in Figure 5.17

which avoids all obstacles and remains in the original class.

51

z

a

Figure 5.17 Corrected Shortest Path

The correct path around the obstacles can be determined by

using a distance function. Then, methods discussed in Chapter

IV are employed to negotiate the new impeding obstacles. In

Figure 5.18, segment PSt--which is one segment of the bounding

path--joins pegs bk and bkl , and lies along the line through

these pegs. We let a circular obstacle B4 have center (u4,v,)

52

and radius r.. Pegs b k and bk+i have cartesian coordinates

(x;,y) and (x;,,y?l) respectively. We let d(*,*) denote

Euclidean distance.

The distance from p* to B]--which is the perpendicular

distance from ps to the nearest point in B,--is given by

d(ps Bj) if the center cf B) lies in the band denoted in FigureII

5.18 whose borders are perpendicular to p' and which passes

through bk and bk ,, and by min{d(bk,Bj),d(bkll,Bj)} if not. We

can then check whether the center of Bi is in the band if we

define vectors

l; = ([xi+!-xI], [yi~j-yi])

and

which can be seen in Figure 5.19 [Ref. 5].

not
v i1 I ated

Figure 5.18 Band Created By One Segment of a Polygonal Path

53

Then the center of B is in the band if and only if I i -i_!,j>0

and 1, * i<O, where (.) denotes the inner product. We write
t

the distance function corresponding to ps passing through B]

as

I d(pb9) ; if Ii - 1, 1 ,j > o and I i j<0

d (p;, B) =

min d(bk,Bj) ,d(bk.1,Bj); otherwise

These distances are easily computed with

d(bk 1,Bj) = [(x 1 -uj)2 + (y-vj)2] - r.

and

d(p:,Bj) = (yi.-y) yj - (x 1I,-xi) vj - x, (u 14 -h,) + yj (x1i.-xl) -

(y,.,-Y,) 2 + (x, 1_xl) 2]% -r

[Ref. 5].

b X.b

Figure 5.19 Vectors to Help Determine d(ps*,B])

54

With this new information, appropriate tangent lines must

be found in order to avoid newly-violated obstacles and to

keep the path in the correct class. These new tangent lines

may also encroach obstacles. So the process of checking all

obstacles is continued until no obstacles are violated.

To find the length of the shortest path, we sum the

straight line segments and all of the arc lengths

corresponding to the distances traveled around each circular

obstacle.

55

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

Determination of the shortest path between two points in

a plane containing obstacles has applications in many fields,

particularly that of robotic path planning. This thesis

addresses several key issues belonging to a larger plan for

the solution of the shortest path problem. This plan may be

summarized as follows:

1. Partition the set of paths into homotopy classes.
2. Associate algebraic "names" with each of these classes.
3. Produce a finite list of feasible classes.
4. For each class on the above list, calculate an

inexpensive lower bound on the length of its shortest
path.

5. Arrange the list in increasing order of these lower
bounds.

6. Considering the clazses in listed order, calculate the
shortest path in the class. Calculation terminates when
some class is encountered whose shortest path has length
shorter than the lower bound associated with the
succeeding class.

The approach outlined above offers two primary

computational advantages. First, note that the collection of

possible paths from a given point of origin to a given

destination is uncountably infinite. By organizing the search

around homotopy classes and by taking advantage of certain

topological relationships in the region [Ref. 3], the search

of an uncountably large set is replaced by a search of a

finite list.

56

Second, the search of this finite list is ordered

according to lower bounds which estimate the lengths of the

associated shortest paths. This ordering allows the search to

terminate without exhausting the list. The bounds associated

with each class are inexpensive to calculate--relative to the

cost of finding the class' shortest path. This results in

further savings of computational effort.

The contributions of this thesis concentrate in areas 2,

4, and 6 of the above list.

As regards the association of names with homotopy classes

(area 2) we present a computational investigation which was

conducted ancillary to proof activity in this area. In

summary, we associate a name with each homotopy class as

follows: by imposing a certain labeled reference frame on the

region in question; by encoding information about the

relationship of a given path with the frame; and by employing

algorithms presented here. In this way, we reduce the encoded

information to a string of characters which is unique to each

class. The investigation presented here uses a presentation

of the well-known fundamental group as a standard of

comparison to verify that the character strings used in our

approach are in fact class names. (This proposition has

subsequently been proved [Ref. 2]). The significance of the

structure of the names which we employ is that they

incorporate information which is useful both for the

57

calculation of class bounds and for calculation of class

shortest paths.

For the calculation of class bounds (area 4) we represent

each obstacle by a point chosen within it. This point is used

to construct the reference frame which is imposed on the

region. Restricting our attention to such summary information

allows class bounds to be calculated cheaply.

The final step (area 6) begins with an ordered list of

classes. In this paper we present a method by which shortest

paths of a class may be calculated when the obstacles are

circular. This is the only step in which any generality is

lost, and is potentially fruitful subject for further study.

B. RECOMMENDATIONS FOR FURTHER STUDY

The field of robotics is one that is gaining much interest

in mathematics and other fields of study. Further analysis of

the reference frame and its properties may aid future

researchers in answering other questions concerning the

shortest path problem.

One aspect of the problem that can be studied further

relates to areas 4 and 6 above. Programming the two steps of

finding the lower bound for a class and subsequently

determining the shortest path in a class would be quite

useful.

Another computational problem relates to area 2. I, is

believed that further study and refinement of the code could

result in a program which is even more efficient.

58

Another possible subject of future research is that of

considering non-circular obstacles (area 6). It should be

noted that any set of obstacles can be covered with circles.

With this approximation the procedures presented in this

thesis may be applied.

Finally, this thesis introduces only part of the solution

to the shortest path problem. The thesis by CAPT Kevin D.

Jenkins, U.S. Marine Corps [Ref. 3], presents the remaining

portions of the solution (area 3), and should be studied in

conjunction with this paper.

59

APPENDIX A. FORTRAN PROGRAM: THE CIMPUTATIONAL INVESTIGATION

PROGRAM CLASNAME FORTRAN

C ***********l*************l*l**************************************l***
C THIS PROGRAM RANDCLY GENERATES OBSTACLES AND A POLYGONAL PATH
C THROUCJ THOSE OBSTACLES TO DETERMINE WHETHER OR NOT THE PROCEDURES
C USED BY COMPETI NG ALGORITH1M PRODUCE THE SAME FUNDAMENTAL GROUP
C REPRESENTATION FOR THAT PATH.

C THIS PORTION OF THE PROGRAM SERVES AS THE MAIN DRIVER WHICH RECEIVES
C THE PARAMETERS DEFINING THE REGION AND INITIALIZES THE LINK LIST
C ARRAYS WHICH WILL BE USED TO REPRESENT THE POLYGONAL PATH.

C INPUT: INITIAL SEED FOR THE RANDOM NUMBER GENERATOR, NIUBER OF
C OBSTACLE CONFIGURATIONS AND PATHS TO BE TESTED, NUMBER OF
C OBSTACLES IN THE PLANE AND NUMBER OF SEGIENTS IN EACH
C POLYGONAL PATH

C OUTPUT: F I NAL RANDOM NUMBER GENERATOR SEED AND MESSAGES I ND ICAT I NG
C ANY PATHS WHICH PRODUCE DIFFERENT FUNDAMENTAL GROUP
C REPRESENTATIONS

REAL*8 BX(1000), BY(1000), X(1000), Y(1000), DSEED
INTEGER NOBS, NSEGS, NUMPTS, N, M, HEAD(1000)

+ NEXT(1000), PRED(1000), BOARD, PATH
EXTERNAL GGUBFS

DSEED = 123457.0
i. - 1000
N 1000
NOBS = 20
NSEGS = 5
NUMPTS = NSEGS + 1
PRINT*, 'INPUT SEED', DSEED

DO 1 BOARD = 1, N
CALL BOARDS (DSEED, BX, BY, NOBS)
DO 2 PATH = 1, M

CALL INIT (HEAD, NEXT, PRED, PSEED, DSEED)
CALL PATHS (DSEED, X, Y, NSEGS)
CALL TEST(HEAD,NEXT,PRED,BX,BY,NOBS,X,Y,NUMPTS,BSEED,PSEED)

2 ONTINUE
1 CONTINUE

PRINT*,'
PRINT*,'FINAL SEED', DSEED

STOP
END

60

SUBROUTINE INIT (HEAD, NEXT, PRED , PSEED, DSEED)
C ***********************************

C THIS SUBROUTINE INITIALIZES THE DOUBLE LINK LIST ARRAYS THAT WILL
C REPRESENT THE PATH.

C INPUT: DSEED

C OUTPUT: HEAD, NEXT, AND PRED ARRAYS SET TO ZERO, AND SEED FOR THE
C R.N.G. PRIOR TO COJNSTRUCTION OF THE PATH

INTEGER HEAD(1000), NEXT(1000), PRED(1000)
REAL*8 PSEED, DSEED

PSEED DSEED

DO 3 K 1,1000
HEAD(K) =0
NEXT(K) =0
PRED(K) = 0

3 CNTINUE

RETURN
END

SUBROUTINE BOARDS (DSEED, BX, BY, NOBS)
C ***********************************

C TH IS SUBROUT INE USES A PSEUDO RANDOM NUM9BER GENERATOR TO CREATE THE
C CORDINATES OF EACH1 OBSTACLE ON THE BOARD, SCALING ALL COORDINATES
C TO BE IN THE INTERVAL (-1,1).

C INPUT: NUM.RBER OF OBSTACLES IN THE REGION AND A SEED FOR THE R.N.G.

C OUTPUT: OBSTACLE COORD INATES

REAL*8 BX(1000), BY(1000), DSEED
EXTERNAL GGU3BFS

DO 1 1I 1, NOBS
* BX(I) = 2. * GGUBFS(DSEED) - 1.

1 BY(I) = 2. * GGBFS(DSEED) - 1.

RETURN
END

61

SUBROUTINE PATHS (DSEED, X, Y, NSEGS)

C RANDOMLY GENERATES THE X AND Y O0ORDINATES OF THE VERTICES FOR THE
C POLYGONAL PATH, SCALING ALL COORDINATES TO BE IN THE INTERVAL (-1,1).
C THIS SUBROUTINE ALSO ENSURES THAT THE PATH IS A CLOSED LOOP BY
C ASSIGNING THE START/FINISH POINTS THE SAME OOORDINATES.

C INPUT: NUIBER OF PATH SEGMENTS AND A SEED FOR THE R.N.G.

C OUTPUT: COORDINATES OF VERTICES ALONG THE POLYGONAL PATH

REAL*8 X(1000), Y(1000), DSEED
EXTERNAL GGUBFS

DO 1 I = 1, NSEGS
X(I) = 2. * GGUBFS(DSEED) - 1.

1 Y(I) = 2. * G3UBFS(DSEED) - 1.

X(NSEGS+I) = X(1)

Y(NSEGS+I) = Y(1)

RETURN
END

SUBROUTINE TEST(HEAD, NEXT, PRED, BX, BY, NOBS, X, Y, NUIPTS,
+ BSEED, PSEED)

C GENERATES THE RAW STRING OF CHARACTERS REPRESENTING A PATH AND
C DETERMINES ITS FUNDAMENTAL GROUP REPRESENTATION USING ALGORITHMS 1
C AND 2. RESULTS OF THESE COMPETING ALGORITHMS ARE THEN COMPARED FOR
C DIFFERENCES.

C INPUT: A POLYGONAL PATH AND COORDINATES OF POINTS REPRESENTING

C OBSTACLES

C OUTPUT: COMPARED RESULTS OF ALGORITHMS

INTEGER HEAD(1000), NEXT(1000), PRED(1000), FR(1000), NR(1000),
+ PR(1000), FL(1000), NL(1000), PL(1000)
REAL*8 BX(1000), BY(1000), X(1000), Y(1000)

DATA FR/1000*O/
DATA NR/1000*O/
DATA PR/1000*0/
DATA FL/1000*0/
DATA NL/1000*0/
DATA PL/1000*O/

62

CALL RAWSTR(BX, BY, NOSS, X, Y, NLN'PTS, HEAD, NEXT, PRED, NELEMS)
CALL ALG2 (NOBS, NELEMS, HEAD, NEXT, X, Y, BX, BY, FR, NR, PR)
CALL CANALG2 (FR, NR, PR)
CALL ALG1 (HEAD, NEXT, PRED, NELEMS)
CALL ALG2 (NOBS, NELEMS, HEAD, NEXT, X, Y, BX, BY, FL, NL, PL)
CALL OTREX (FL, NL, PL, FR, NR, PR, BSEED, PSEED)

RETURN
END

SUBROUTINE RAWSTR(BX, BY, NOBS, X, Y, NUMPTS, HEAD, NEXT, PRED,
+ NELEMS)

C ***********************************

C PRODUCES THE RAW STRING OF CHIARACTERS WHICH REPRESENTS THE PATH,
C PAYING CLOSE ATTENTION TO THE ORDERING OF THE CHARACTERS WHERE
C NECESSARY. THE STRING IS ONSTRUCTED BY IDENTIFYING THOSE OBSTACLE
C REFERENCE LINES WHICH ARE CROSSED AS EACH PATH SEGMENT IS TRAVERSED
C IN ORDER.

C INPUT: ORDERED LIST OF VERTICES REPRESENTING THE PATH AND A POINT
C REPRESENTING EACH OBSTACLE IN THE REGION

C OUTPUT: A RAW STRING OF ALPHAS AND BETAS ONTAINED IN AN ARRAY
C NAMED HEAD() AND ITS PARALLEL ARRAYS NEXT() AND PRED() WHICH
C PRODUCE THE DOUBLE LINKED LIST

IMPLICIT REAL*8 (A-H,O-Z)
INTEGER HEAD, NEXT, SEG, FSTSTR, HDINDX, SEGEND, FIRST, START,

+ LENGTH, PRED
LOGICAL ALLALF
DIMENSIroN X(1000), Y(1000), BX(1000), BY(1000), AilOQO0),

+ Bl(1000), A2(1000), B2(1000), D2(1000), DIST(1000),
+ FIRST(1000), HEAD(1000), NEXT(1000), PRED(1000)

DATA DIST/1000*0.0/
DATA F IRST/1000*0/

CALL SEThP(NUMPTS,NOBS,CX,CY,X,Y,BX,BY,A1,Bl,A2,B2,D2)

HIDINDX 2
NSEGS NtYIPTS - 1
LOLD =1

HEAD(LOLD) =0

63

DO 7 SEG = 1, NSEGS
SEGEND = SEG + 1
FSTSTR =HDINDX
LSTSTR = HlDINDX
ALLALF =.TRUE.
LENGTH = 0

DO 6 LINE 1, NOBS
CHECK1 (Al(LINE)*X(SEG)+Bl(LINE)*Y(SEG))*

+ (Al(LINE)*X(SEGEND)+Bl(LINE)*Y(SEGEND))
IF (o-ECK1.LT.O) THEN

LENGTH =LENGTH + 1
CHECK2 =(A2(SEG)*BX(LINE)+B2(SEG)*

+ BY(LINE)+D2(SEG))*D2(SEG)
IF (CHECK2.LT.O) THEN

HEAD(HIDINDX) = -LINE
LSTSTR =HDINDX
HDINDX =HDINDX + 1

ELSE
CALL CASES1 (Al, 81, A2, B2, D2, SEG, LINE, XINT,

+ Y INT)
DISTC =XINT**2 + YINT**?
DISTB =(XINT-BX(LINE))**2 + (YINT-BY(LINE))**2
IF (DISTB.LT.DISTC) THEN

HEAD(HDINDX) =LINE
LSTSTR = HDINDX
ID I NDX =HID INDX + 1
ALLALF =.FALSE.

ELSE
HEAD(HDINDX) =-LINE
LSTSTR =HDINDX
HIDINDX =HDINDX + 1

END IF
END IF

END IF
6 ONTINUE

IF (LENGTH.NE.O) THEN
IF (ALLALF) THEN

CALL ALPH-AS (NEXT, LOLD, FSTSTR, LSTSTR, SEG, START,
+ HEAD, NSEGS, PRED)

ELSE
CALL ORDER(SEG, LINE, HDINDX, HEAD, NEXT, Al, A2,

+ 831, B2, 02, FSTSTR, LSTSTR, X, Y, START,
+ LENGTH, FIRST, LOLD, NSEGS, PRED)

END IF
END IF

7 (X*JTINUE

CALL OUNTR(START, NEXT, HEAD, NELEMS)
RETURN
END

64

SUBROUTINE SETUP(NUMPTS, NOBS, CX, CY, X, Y, BX, BY, Al, B1, A2,
+ B2, D2)

C FOR EACH OBSTACLE, THIS ROUTINE DETERMINES THE COEFFICIENTS OF THE

C EQUATION FOR THE REFERENCE LINE FROM THE OBSTACLE TO THE ORIGIN. IN

C ADDITION, IT CALCULATES THE COEFFICIENTS OF THE LINE REPRESENTING

C EACH SEGM~ENT OF THE POLYGONAL PATH.

C INPUT: NUIIPTS, NOBS, COORDINATES OF VERTICES ALONG POLYGZ)NAL PATH
C AND COORDINATES OF THOSE POINTS WHICH REPRESENT EACH
C OBSTACLE

C OUTPUT: COEFFICIENTS OF LINEAR EQUATIONS REPRESENTING PATH SEGMVENTS
C AND REFERENCE LINES FOR EACH OBSTACLE

IMPLICIT REAL*8 (A-H, O-Z)

DIMENSION X(1000), Y(1000), BX(1000), BY(1000), A1(1000),
+ B1(1000), A2(1000), B2(1000), D2(1000)

DO 4 I = 1, NOBS
A1(I) = BY(I)
Bi(l) = -BX(1)

4 CONTINUE

CX = 0.0
CY = 0.0
I = 1

DO 5 J = 2,NUMPTS
A2(I) = Y(J) - Y(I)
B2(I) = X(I) - X(J)
D2(I) = (Y(I)*X(J))-(X(I)*Y(J))
I = 1+1

5 CONTINUE

RETURN
END

65

SUBROUJTINE CASES1(A1, Bi, A2, 82, D2, SEG, LINE, XINT, YINT)
C ***********************************

C THIS SUBROUTINE DETERMINES THE COlORDINATES FOR THE POINT OF
C INTERSECTION OF A GIVEN PATH SEGMENT AND A GIVEN OBSTACLE REFERENCE
C LINE. NUMERICAL STABILITY OF CALCULATIONS REQUIRES THE MATHEMATICAL
C OPERATIONS TO BE SEPARATED INTO CASES, THE BEST CASE BEING USED FOR
C EACHI PARTICULAR SITUATION.

C INPUT: CEFFICIENTS OF LINEAR EQUATIONS FOR PATH SEGM9ENT AND
C REFERENCE LINE TO BE EVALUATED

C OUTPUT: POINT OF INTERSECTION OF THE PATH SE@1ENT AND THE OBSTACLE
C REFERENCE LINE

IMPLICIT REAL*8 (A-H,O-Z)
INTEGER SEG
DIMENSION A1(1000), B1(1000), A2(1000), B2(1000), D2(1000), A(2,2)

A(1,1) =Al(LINE)
A(1,2) =Bl(LINE)
A(2,1) =A2(SEG)
A(2.2) =B2(SEG)
BIGEST =0.0

DO 1 L =1,2
DO 1 K = 1,2

TEST = DABS(A(K,L))
IF (TEST.GT.BIGEST) THEN

BIGEST = TEST
KBIG =K
LBIG =L

END IF
1 CO)NTINUE

IF (KBIG.EQ.1) THEN
IF (LBIG.EQ.1) THEN

YINT = -D2(SEG)/(B2(SEG)-B1(LINE)*A2(SEG)/Al(LINE))
XINT =-B1(LINE)*YINT/A1(LINE)
RETURN

ELSE
XINT =-D2(SEG)/(A2(SEG)-A1(LINE)*B2(SEG)/B1(LINE))
YINT =-A1(LINE)*XINT/B1(LINE)
RETURN

END IF
ELSE

IF (LBIG.EQ.l) THEN
YINT =(D2(SEG)*A1(LINE)/A2(SEG))/

+ (B1(LINE)-B2(SEG)*A1(LINE)/A2(SEG))
XINT =(-D2(SEG)-B2(SEG)*YINT)/A2(SEG)
RETURN

66

ELSE
XINT = (D2(SEG)*Bl(LINE)/B2(SEG))/

+ (AI(LINE)-A2(SEG)*BI(LINE)/B2(SEG))
YINT = (-D2(SEG)-XINT*A2(SEG))/B2(SEG)
RETURN

ENDIF
ENDIF

END

SUBROUTINE ALPHAS (NEXT, LOLD, FSTSTR, LSTSTR, SEG, START, HEAD,
+ NSEGS, PRED)

C * * * * * * * * * * * *

C GIVEN THAT A SEGMENT OF THE PATH CROSSES ONLY ALPHA RAYS WHEN
C TRAVERSED, THESE CROSSINGS ARE SIMPLY INSERTED INTO THE LINK LIST
C ARRAYS IN THE ORDER IN WHICH THEY WERE DETECTED, I.E., SMALLEST TO
C LARGEST IN ABSOLUTE VALUE.

C INPUT: STRING REPRESENTING THE REFERENCE LINES CROSSED BY THE
C CURRENT PATH SEGMENT, GIVEN THAT ALL CROSSINGS ARE ALPHAS

C OUTPUT: UPDATED NEXT() AND PRED() ARRAYS WHICH CONTAIN THE STRING
C REPRESENTING THE MOST CURRENT PATH SEGMENT

INTEGER NEXT(1000), FSTSTR, SEG, START, HEAD(1000), PRED(1000)

NEXT(LOLD) = FSTSTR
PRED(FSTSTR) LOLD
LAST = LSTSTR - 1

IF (LAST.GT .FSTSTR) THEN
DO 12 I = FSTSTR,LAST

NEXT(I) = I + 1
PRED(I+1) = I

12 CONTINUE

ELSEIF (LAST.EQ.FSTSTR) THEN
NEXT(FSTSTR) = LSTSTR
PRED(LSTSTR) = FSTSTR

ENDIF

IF(SEG.EQ.1) START LOLD

LOLD = LSTSTR
RETURN
END

67

SUBROUTINE ORDER(SEG, LINE, HIDINDX, HEAD, NEXT, Al, A2, B1, B2,
+ D2, FSTSTR, LSTSTR, X, Y, START, LENGTH, FIRST,
+ LOLD, NSEGS, PRED)

C GIVEN THAT A SEGMENT OF THE PATH CROSSES ONE OR IORE BETAS, THIS
C SUBROUTINE DETERMINES THE ACTUAL ORDER OF CROSSING WHEN TRAVERSING
C THE SEGMENT FROM BEGINNING TO END. THIS IS DONE BY FIRST DETERMINING
C THE DISTANCE FROM THE SEGMENT START POINT TO THE POINT OF
C INTERSECTION OF EACH CROSSED OBSTACLE REFERENCE LINE. THESE
C DISTANCES ARE THEN SORTED FROM SMALLEST TO LARGEST AND CROSSINGS
C ARE UPDATED IN THE LINK LIST ACORDINGLY.

C INPUT: HEAD() AND ALL COORDINATES REQUIRED TO DETERMINE THE
C DISTANCES FROM INITIAL VERTEX OF PATH SEGMENT TO EACH OF
C THE CROSSED REFERENCE LINES

C OUTPUT: HEADO, NEXT() AND PRED() ARRAYS ONTAINING THE RAW STRING
C WHICH ACCURATELY REPRESENTS THE PATH ALONG THE CURRENT
C SEGMENT

INTEGER SEG, LINE, HEAD(1000), NEXT(1000), FSTSTR, HDINDX,
+ START, FIRST(1000), PRED(lO00), F
REAL*8 XINTER(1000), YINTER(1000), Al(1000), Bl(1000),
+ A2(1000), B2(1000), D2(1000), DIST(IO00), X(1O00), Y(1000)

DO 8 J = FSTSTR, LSTSTR
LINE = ABS(HEAD(J))
CALL CASES2 (Al, B1, A2, B2, D2, SEG, LINE, XINTER, YINTER)
DIST(J) = (XINTER(LINE)-X(SEG))**2+(YINTER(LINE)-Y(SEG))**2
DIST(J) =-DIST(J)
NEXT(J) = J+l
PRED(J+l) J

8 CNTINUE

NEXT(LSTSTR) 0
PRED(LSTSTR+l) = LSTSTR

CALL MERG2(DIST, NEXT, PRED, FSTSTR, F)

NEXT(LOLD) = F
PRED(F) = LOLD
IF(SEG.EQ.1) START = LOLD
LOLD = NEXT(LOLD)

17 IF(NEXT(LOLD).NE.0) THEN
LOLD = NEXT(LOLD)
G0 TO 17

ENDIF

RETURN
END

68

SUBROUTINE CASES2(Al, Bi, A2, B2, D2, SEG, LINE, XINTER, YINTER)
C ***********************************

C DETERMINES CORDINATES FOR THE POINT OF INTERSECTION OF THE PATH
C SEGMENT AND EACH OF THE REFERENCE LINES IT CROSSES. AGAIN, IN ORDER
C TO MAINTAIN NUM9ERICAL STABILITY, CALCULATIONS ARE MADE USING THE
C MOST APPROPRIATE CLOSED FORM EQUJAT ION.

C INPUT: CEFFICIENTS OF LINEAR EQUATIONS FOR CURRENT PATH SEGM1ENT
C AND ALL OBSTACLE REFERENCE LINES WHICH IT CROSSES

C OUT PUT: COORD INATES FOR POI NTS OF I NTERSECT ION OF EACH OBSTACLE
C REFERENCE LINE WITH THE PATH SEGMENT

IMPLICIT REAL*8 (A-H, O-Z)
INTEGER SEG
DIMENSION A1(1000), Bl(1000), A2(1000), B2(1000), D2(1000),

+ XINTER(1000), YINTER(1000), A(2,2)

A(l,l) =Al(LINE)
A(1,2) =B1(LINE)
A(2,1) =A2(SEG)
A(2,2) =B2(SEG)
BIGEST =0.0

DO 1 L =1,2
DO 1 K = 1,2

TEST = DABS(A(K,L))
IF (TEST.GT.BIGEST) THEN

BIGEST = TEST
KBIG = K
LBIG =L

END IF
1 CONTINUE

IF (KBIG.EQ.1) THEN
IF (LBIG.EQ.1) THEN

YINTER(LINE)= -D2(SEG)/(B2(SEG)-B1(LINE)*A2(SEG)/A1(LINE))
XINTER(LINE)= -Bi (LINE)*YINTER(LINE)/Al(LINE)
RETURN

ELSE
XINTER(LINE)= -D2(SEG)/(A2(SEG)-Al(LINE)*B2(SEG)/B1(LINE))
YINTER(LINE)= -Al (LINE)*XINTER(LINE)/B1 (LINE)
RETURN

END IF
ELSE

IF (LBIG.EQ.1) THEN
YINTER(LINE) =(D2(SEG)*A1(LINE)/A2(SEG))/

+ (Bl(LINE)-B2(SEG)*Al(LINE)/A2(SEG))

69

XINTER(LINE) = (-D2(SEG)-B2(SEG)*YINTER(LINE))/A2(SEG)
RETURN

ELSE
XINTER(LINE) = (D2(SEG)*BI(LINE)/B2(SEG))/

+ (AI(LINE)-A2(SEG)*Bl(LINE)/B2(SEG))
YINTER(LINE) = (-D2(SEG)-XINTER(LINE)*A2(SEG))/B2(SEG)
RETURN

END IF
ENDIF
END

SUBROUTINE MERG2 (DIST, NEXT, PRED, FSTSTR, F)
C **************************************l*

C THIS SUBROUTINE SORTS A SUBSTRING OF ALL POSTIVE INTEGERS INTO
C INCREASING ORDER.

C INPUT: A DOUBLE LINK LIST CONSISTING OF DIST, NEXT, AND PRED ARRAYS

C OUTPUT: A DOUBLE LINK LIST WITH ALL ENTRIES PLACED IN THE ORDER
C IN WHICH THEIR RESPECTIVE REFERENCE LINES WERE CROSSED

IMPLICIT INTEGER(A-Z)
REAL*8 DIST(1000)
LOGICAL DONE
DIMENSION NEXT(1000), PRED(1000)

DONE = .FALSE.
P = FSTSTR

1 F=P

CALL SORT2 (F, PREDF, P, DIST, NEXT, DONE, PRED)

IF(DONE) RETURN

GOTO 1

END

70

SUBROUTINE SORT2(F, PREDF, P, DIST, NEXT, DONE, PRED)

C MARCHES DOWN A SUBSTRING OF POSITIVE INTEGERS AND ONLY SORTS IF
C ELEMENTS ARE NOT IN INCREASING ORDER. IF A NLMBER NEEDS TO BE
C PLACED HIGHER IN THE LIST SUBROUTINE 'PUT' IS CALLED TO DO SO

C INPUT: POINTER F INTO DOUBLE LINK LIST ARRAYS DIST, NEXT, AND PRED
C TO INDICATE THE BEGINNING OF A SUBSTING OF POSITIVE INTEGERS,
C AND PREDF

C OUTPUT: P IS A POINTER, DIST(P) IS THE LAST POSITIVE INTEGER IN THE
C SUBSTRING THAT IS BEGUN BY DIST(F)

IMPLICIT INTEGER (A-Z)
REAL*8 DIST(1000)

LOGICAL DONE
DIMENSION NEXT(1000), PRED(1000)
TAIL = F

1 NTAIL NEXT(TAIL)

IF(NTAIL.EQ.0) THEN
DONE = .TRUE.
RETURN

ENDIF

IF(DIST(NTAIL).LE.DIST(TAIL)) THEN
TAIL = NTAIL
GOTO 1

ENDIF

CALL PUT2(F, TAIL, NTAIL, PREDF, DIST, NEXT, PRED)

GOTO 1

END

71

SUBROUTINE PUT2 (F, TAIL, NTAIL, PREDF, DIST, NEXT, PRED)

C REARRANGES POINTERS TO PLACE POSITIVE INTEGERS IN INCREASING ORDER.

C INPUT: F - START OF POSITIVE SUBSTRING
C TA I L - END OF CURRENTLY SORTED PORT I ON OF SUBSTR I NG
C NTAIL NEXT(TAIL) - POINTER TO THE SUCCESSOR OF TAIL IN THE
C I TEM TO BE I NCORPORATED INTO THE SORTED PORT ION OF
C THE LIST
C PREDF - THE PREDECESSOR OF F IN LINKED LIST

C OUTPUT: SOME POINTERS IN NEXT AND PRED ARE CHANGED TO PUT DIST(NTAIL)
C IN ITS PROPER PLACE IN THE SORTED PORTION ON THE LIST

IMPLICIT INTEGER (A-Z)
REAL*8 DIST(1000)
DIMENSION NEXT(1000), PRED(1000)

IF (DIST(NTAIL).GE.DIST(F)) THEN
TEMP = NEXT(NTAIL)
NEXT(NTAIL) = F
PRED(F) = NTAIL
NEXT(TAIL) = TEMP
PRED(TEMP) = TAIL
F = NTAIL
RETURN

END IF
CALL WALK2(F, TAIL, NTAIL, DIST, NEXT, ")RED)
RETURN
END

72

SUBROUTINE WALK2(F, TAIL, NTAIL, DIST, NEXT, PRIED)
C************************************

C THIS SUBROUTINE WALKS DOWN THE LINKED LIST AND PLACES THE DIST(NTAIL)
C IN THE CRRECT POSITION IN THE DIST ARRAY.

C INPUT: F, TAIL, NTAIL ARE USED AS ABOVE

C OUTPUT: ALTERS POINTERS IN NEXT AND PRIED ARRAYS TO PLACE DIST(NTAfL)

C AFTER DIST(F) AND BEFORE DIST(TAIL) IN DOUBLE LINK LIST

IMPLICIT INTEGER (A-Z)
REAL*8 DIST(1000), HNTAIL
DIMENSION NEXT(1000), PRED(1000)

I =F
NEXTI NEXT(i)
HNTAIL =DIST(NTAIL)

1 IF(HNTAIL.GE.DIST(NEXTI)) THEN
NEXT(I) = NTAIL
PRED(NTAIL) =I
NNTAIL =NEXT(NTAIL)
NEXT(NTAIL) =NEXTI
PRED(NEXTI) =NTAIL
NEXT(TAIL) = NNTAIL
PRED(NNTAIL) TAIL
RETURN

END IF

I =NEXTI
NEXTI NEXT(I)
GOTO 1

END

73

SUBROUTINE COUNTR(START, NEXT, HEAD, NELEMS)
C **

C THIS SUBROUTINE OUNTS THE NUMBER OF ELEMENTS IN A GIVEN STRING OF
C CHARACTERS

C INPUT: HEAD() AND NEXT() ARRAYS FOR THE STRING OF CHARACTERS

C OUTPUT: NLIBER OF ELEMENTS IN THE STRING

INTEGER PTR, NEXT(1000), HEAD(1000), START

PTR = NEXT(START)

NELEMS = 0

20 IF (PTR.NE.0) THEN
NELEMS = NELEMS + 1
PTR = NEXT(PTR)
GO TO 20

ENDIF

RETURN
END

74

SUBROUTINE ALG2(NOBS, NELEMS, HEAD, NEXT, X, Y, BX, BY, FR, NR,
+ PR)

C **

C GENERATES THE WELL-KNOW FUNDAMENTAL GROUP REPRESENTATION OF AN
C EQUIVALENCE CLASS.

C INPUT: RAW OR CANONICAL STRING, WITH # OBSTACLES, # ELEMENTS IN
C STRING, COORDINATES OF A AND OBSTACLES (BK)

C OUTPUT: 1) IF INPUT IS RAW STRING, THEN POSSIBLY UNREDUCED
C FUNDAMENTAL GROUP WILL RESULT (IF CANCELLATION OF LIKE
C POSITIVE NUMBERS COULD HAVE OCOURRED IN THE RAW STRING).
C 2) IF INPUT IS CANONICAL STRING, THEN THE RESULTING
C FUNDAMENTAL GROUP WILL BE IN REDUCED FORM.

REAL*8 XA, YA, XB, YB, X(1000), Y(1000), BX(1000), BY(1000)
INTEGER NOBS, NELEMS, HEAD(1000), NEXT(1000), PRED(1000),

+ FR(1000), NR(1000), PR(1000), S(1000), FUNDGP(1000),
+ START

LOGICAL RIGHT(1000), RITE

LENGTH = 1
START = NEXT(l)

XA = X(1)
YA = Y(1)

DO I K = 1, NOBS
XB BX(K)
YB = BY(K)

1 E-IGHT(K) = RITE(XA, YA, XB, YB)

NELEM = NELEMS + 1
DO 10 M = 2, NELEM

S(M) = HEAD(START)
J = IA3S(S(M))
RIGHT(J) = .NOT. RI(GHT(J)

IF(S(M).GT.O) THEN
LENGTH = LENGTH + 1
IF(RIG-HT(J)) THEN

FUNDGP(LENGTH) = J
ELSE

FUNDGP(LENGTH) = -J
ENDIF

ENDIF
START = NEXT(START)
IF(START.EQ.0) OTO 11

10 CONTINUE

75

11 FR(1) = 0
NR(1) = 2

DO 2 I = 2, LENGTH
FR(I) FUNDGP(I)
i(I) = I + 1

PR(I) I - 1
2 CONTINUE

NR(LENGTH) 0

RETURN
END

LOGICAL FUNCTION RITE(XA, YA, XB, YB)
C ***

C THIS FUNCTION DETERMINES WHICH SIDE OF A GIVEN DIRECTED LINE ANY
C POINT LIES.

C INPUT: TWO POINTS THAT DETERMINE THE LINE

C OUTPUT: LOGICAL VARIABLE THAT IS TRUE IF A POINT LIES TO THE RIGHT
C AND FALSE IF A POINT LIES TO THE LEFT

REAL*8 XB, YB, XA, YA, SI(NA

RITE = .TRUE.

SIGNA -((YB*XA)-(XB*YA))

IF(SIGNA.LT.0)THEN

RITE = .FALSE.
RETURN

ENDIF

IF(SIGNA.EQ.0) THEN
PRINT*,'THE POINT A LIES ON THE LINE LK PROGRAM STOPS'
STOP

ENDIF

RETURN
FND

76

SUBROUTINE CANALG2(HEAD, NEXT, PRED)
C ***********************************

C THIS SUBROUTINE TAKES AN UNREDUCED FUNDAM9ENTAL GROUP REPRESENTATION
C OF A GIVEN CLASS AND CANCELS A GENERATOR IF IT IS ADJACENT TO ITS
C INVERSE.

C INPUT: HEAD, NEXT, AND PRED ARRAYS

C OUTPUT: HEAD, NEXT, AND PRED ARRAYS W ITH NEXT AND PRED REARRANGED
C TO SKIP AROUND CANCELLED ELEMENTS

IMPLICIT INTEGER (A-z)
DIMENSION HEAD(1000), NEXT(1000), PRED(1000)

START 1
PTR1 START
PTR2 zSTART
PTR3 NEXT(PTR2)

10 IF (PTR3.NE.0) THEN
IF (HEAD(PTR2).EQ.-(HEAD(PTR3))) THEN

NEXT(PTR1) = NEXT(PTR3)
PRED(NEXT(PTR3)) =PTR1
IF(NEXT(PTR1).EQ.0) RETURN
PTR2 =PTR1
PTR1 =PRED(PTR1)
PTR3 = NEXT(PTR2)

ELSE
PTR1 =PTR2
PTR2 =PTR3
PTR3 =NEXT(PTR2)

END IF
GO TO 10

END IF
RETURN
END

77

SUBROUTINE ALG1(HEAD, NEXT, PRED, NELEMS)

C THIS SUBROUTINE TAKES A GIVEN RAW STRING OF CHARACTERS REPRESENTING
C A PATH AND PRODUCES THE CANONICAL FORM OF THAT STRING. THIS IS DONE
C BY FIRST ORDERING ALL OF THE ALPHA SUBSTRINGS FROM SMALLEST TO
C LARGEST I N ABSOLUTE VALUE. NEXT, CANCELLAT ION I S PERFORMED TO
C ELIMINATE ALL LIKE PAIRS OF ADJACENT ELEMENTS FROM THE STRING.

C INPUT: RAW STRING IN FORM OF DOUBLE LINKED LIST WITH HEADO, NEXT()
C AND PRED() ARRAYS

C OUTPUT: CANON I CAL FORM OF THE RAW STR I NG

IMPLICIT INTEGER (A-Z)
DIMENSION HEAD(1000), NEXT(1000), PRED(1000)

START = 1

CALL MERG1(HEAD, NEXT, PRED)
CALL CANCEL(START, HEAD, NEXT, PRED, NELEMS)

RETURN
END

78

SUBROUTINE MERGI (HEAD, NEXT, PRED)
C **

C THIS SUBROUTINE DOES THE INITIAL SORT OF THE ALPHA SUBSTRINGS IN THE
C RAWSTRING (INCREASING IN ABSULUTE VALUE).

C INPUT: HEAD, NEXT, PRED ARRAYS REPRESENTING A DOUBLE LINKED LIST
C OF THE RAWSTRING WITH THE ALPHA SUBSTRINGS UNORDERED

C OUTPUT: POINTERS STORED IN THE ARRAYS NEXT AND PRED ARE ALTERED SO
C THAT EACH SUBSTRING OF THE STORED LIST WHICH CONSISTS
C ENTIRELY OF NEGATIVE INTEGERS IS SORTED INTO NON-INCREASING
C ORDER, WHILE SUBSTRINGS OF POSITIVE INTEGERS ARE LEFT
C UNALTERED.

IMPLICIT INTEER(A-Z)

LOGICAL DONE
DIMENSION HEAD(1000), NEXT(1000), PRED(1000)

DONE = .FALSE.
P=1

1 CALL FRONT (P, F, PREDF, HEAD, NEXT, DONE)

IF(DONE) RETURN

CALL SORT (F, PREDF, P, HEAD, NEXT, DONE, PRED)

IF(DONE) RETURN

GOTO 1

END

79

SUBROUTINE FRONT(P, F, PREDF, HEAD, NEXT, DONE)

C FINDS THE BEGINNING OF NEGATIVE INTEGER STRINGS (ALPHA STRING)

C INPUT: POINTER P INTO LINKED LIST

C OUTPUT: F IS A POINTER INTO THE HEAD ARRAY. POINTS TO FIRST NEGATIVE
C ENTRY WHICH OXZCURS STRICTLY AFTER HEAD(P). PREDF IS POINTER
C SUCH THAT HEAD(PREDF) IS THE PREDESSOR OF HEAD(F).

IMPLICIT INTEGER(A-Z)
LOGICAL DONE
DIMENSION HEAD(1000), NEXT(1000)

F = P
1 PREDF = F
F = NEXT(F)

IF (F.EQ.O) THEN
DONE = .TRUE.
RETURN

ENDI F

IF (HEAD(F).LT.O) RETURN

GOTO 1

END

80

SUBROUTINE SORT(F, PREDF, P, HEAD, NEXT, DONE, PRED)
C * * * * * * * * * * * *

C MARCHES DOWN A SUBSTRING OF NEGATIVE INTEGERS AND ONLY SORTS IF
C ELEMENTS ARE IN INCREASING ORDER. IF A NUMBER NEEDS TO BE
C PLACED HIGHER IN THE LIST SUBROUTINE 'PUT' IS CALLED TO DO SO

C INPUT: POINTER F INTO DOUBLE LINK LIST ARRAYS HEAD, NEXT, AND PRED
C TO INDICATE THE BEGINNING OF A SUBSTRING OF NEGATIVE
C INTEGERS; AND PREDF

C OUTPUT: P IS A POINTER, HEAD(P) IS THE LAST NEGATIVE INTEGER IN THE
C SUBSTRING THAT IS BEGUN BY HEAD(F)

IMPLICIT INTEGER (A-Z)
LOGICAL DONE
DIMENSION HEAD(1000), NEXT(1000), PRED(1000)

TAIL F
1 NTAIL NEXT(TAIL)

IF(NTAIL.EQ.O) THEN
DONE = .TRUE.
RETURN

ENDIF

IF(HEAD(NTAIL).GT.0) THEN
P = TAIL

RETURN
ENDIF

IF(HEAD(TAIL).LE.HEAD(TAIL)) THEN
TAIL = NTAIL
OTO 1

ENDIF

CALL PUT(F, TAIL, NTAIL, PREDF, HEAD, NEXT, PRED)

GOTO 1

END

81

SUBROUTINE PUT (F, TAIL, NTAIL, PREDF, HEAD, NEXT, PRED)
C ***********************************

C SUBROUTINE THAT REARRANGES POINTERS TO PLACE A NEGATIVE INTEGER IN
C NON-INCREASING ORDER.

C INPUT: F - START OF NEGATIVE SUBSTRING
C TAIL - END OF CURRENTLY SORTED PORTION OF SUBSTRING
o NTAIL =NEXT(TAIL) - POINTER TO THE SU)CESSOR OF TAIL IN THE
C ITEM TO BE INCORPORATED INTO THE SORTED PORTION OF
C THE LIST.
C PREDF -THE PREDECESSOR OF F IN LINKED LIST

C OUTPUT: SOME POINTERS IN NEXT AND PRED ARE CHANGED TO PUT HEAD(NTAIL)
C IN ITS PROPER PLACE IN THE SORTED PORTION ON THE LIST

IMPLICIT INTEGER (A-Z)
DIMENSION HEAD(1000), NEXT(1000), PRED(1000)

IF (HEAD(NTAIL).GE.HEAD(F)) THEN
NEXT(PREDF) =NTAIL
PRED(NTAIL) =PREDF
TEMP = NEXT(NTAIL)
NEXT(NTAIL) =F
PRED(F) =NTAIL
NEXT(TAIL) = TEMP
PRED(TEMP) =TAIL
F =NTAIL
RETURN

ENDI F

CALL WALK(F, TAIL, NTAIL, HEAD, NEXT, PRED)

RETURN
END

82

SUBROUTINE WALK(F, TAIL, NTAIL, HEAD, NEXT, PRED)
C***********************************

C THIS SUBROUITNE WALKS DOWN THE LINKED LIST AND PLACES THE HEAD(NTAIL)
C IN THE CORRECT POSITION IN THE HEAD ARRAY. (DECREASING ORDER)

C INPUT: F, TAIL, NTAIL ARE USED AS ABOVE

C OUTPUT: ALTERS POINTERS IN NEXT AND PRED ARRAYS TO PLACE HEAD(NTA IL)
C AFTER HEAD(F) AND BEFORE HEAD(TAIL) IN DOUBLE LINK LIST

IMPLICIT INTEGER (A-Z)
DIMENSION HEAD(1000), NEXT(1000), PRED(1000)

NEXTI =NEXT(I)

HNTAIL =HEAD(NTAIL)

1 IF(HNTAIL.GE.HEAD(NEXTI)) THEN
NEXT(I) =NTAIL
PRED(NTAIL) = I
NNTAIL =NEXT(NTAIL)
NEXT(NTAIL) =NEXTI
PRED(NEXTI) =NTAIL
NEXT(TAIL) = NNTAIL
PRED(NNTAIL) TAIL
RETURN

END IF

I =NEXTI
NEXTI =NEXT(I)
GOTO 1

END

83

SUBROUTINE CANCEL(START, HEAD, NEXT, PRED, NELEMS)

C GIVEN THE SORTED RAW STRING, THIS SUBROUTINE REDUCES THE STRING TO
C CANONICAL FORM BY ADJUSTING THE LINK LIST TO SKIP ANY PAIRS OF
C ADJACENT LIKE ELEMENTS IN THE STR I NG. ONCE TWO ELEMENTS ARE
C ELIMINATED FROM THE STRING, THE SUBSTRINGS WHICH WERE ON THEIR LEFT
C AND RIGHT CONCATENATE TO FORM A NEW STRING AND HENCE A NEW PAIR OF
C ADJACENT ELEMENTS WHICH MUST ALSO BE CHECKED FOR EQUALITY. IN THE
C EVENT A BETA SUBSTRING BECOMES ANNHILATED FROM THE STRING, THE TWO
C ADJACENT ALPHA STRINGS CONCATENATE AND ARE AGAI N SORTED FROM SMALLEST
C TO LARGEST IN ABSOLUTE VALUE AS A SINGLE SUBSTRING.

C INPUT: SORTED RAW STRING

C OUTPUT: CANON I CAL FORM OF THE RAW ST I NG

IMPLICIT INTEGER (A-Z)
DIMENSION HEAD(1000), NEXT(1000), PRED(1000)

START = 1
START1 z START
START2 = START
BETA = START
PTR1 = START1
PTR2 = START1

50 PTR3 = NEXT(PTR2)

IF (HEAD(PTR3).LT.0) THEN
START1 = PTR3
START2 = START1

ELSE
BETA = PTR3

ENDIF

10 IF (PTR3.NE.0) THEN
CALL CHEKER (HEAD, START1, START2, PTR1, PTR2, PTR3, BETA)
IF (HEAD(PTR2).EQ.HEAD(PTR3)) THEN

NEXT(PTR1) = NEXT(PTR3)
PRED(NEXT(PTR3)) = PTR1
PTR2 = NEXT(PTR3)
IF (PTR2.EQ.0) 0O TO 60
CHECK1 = HEAD(PTR2) * HEAD(PTR3)
CHECK2 = HEAD(PTR1) * HEAD(PTR2)
IF (CHECK1.LT.O.AND.CHECK2.GT.O.AND.HEAD(PTR2).LT.0)THEN

PTR2 = PTR1
PTR1 = PRED(PTR1)
PTR3 = NEXT(PTR2)
START1 = START2

6 IF(START1.NE.1.AND.HEAD(PRED(START1)).LT.0)THEN

84

START1 PRED(START1)
00 TO 6

END IF
START2 =PTR3
CALL MERGE (HEAD, NEXT, STARTi, START2, PRED)
PTR1 =PRED(START1)
PTR2 =PTR1
GO TO 50

ELSE IF (OHECKi .LT.0.AND.CHECK2.EQ.0.AND.HEAD(PTR2).LT.0)
+ THEN

PTR2 = PTR1
PTR3 =NEXT(PTR1)
START1 = PTR3
START2 =START 1
GO TO 10

ELSEIF (CHECK1l.GT.0.AND.CHECK2.GT.0.AND.HEAD(PTR2).GT.0)
+ THEN

IF (BETA.EQ.2) THEN
BETA =1

ELSEIF (BETA.EQ.l) THEN
GO TO 9

ELSE
IF(START1.NE.1) BETA = PRED(START1)

11 IF(HEAD(PRED(BETA)).GT.0) THEN
BETA = PRED(BETA)
GO TO 11

END IF
END IF

9 PTR1 =PRED(BETA)
PTR2 = BETA
PTR3 = NEXT(PTR2)
GD TO 10

ELSEIF (O-ECK1.LT.0.AND.CHECK2.GT.0.AND.HEAD(PTR2).GT.0)
+ THEN

PTR2 =PTR1
PTR1 =PRED(PTR1)

IF(HEAD(PTR1) .LT.O)THEN
START 1 =PTR1

5 IF (HEAD(PRED(START1)).LT.0)THEN
START1 PRED(START I)
GO TO 5

END IF
END IF
PTR3 = NEXT(PTR2)
GD TO 10

ELSE IF (0-IEC~I .LT.0.AND.Q-IECK2.LT.0.AND.HEAD(PTR2) .LT.0)
+ THEN

IF(START1.EQ.1) THEN
START1 PTR2

85

START2 =PTR2
PTR3 =NEXT(PTR2)

ELSE
START 1 = START2
PTR3 =NEXT(PTR2)

END IF
GO TO 10

ELSE
STtI'T1 = START2
PTR3 = NEXT(PTR2)

END IF
ELSE

PTR1 = PTR2
PTR2 =PTR3
PTR3 =NEXT(PTR2)

END IF
cx0 TO 10

END IF

60 CALL 0OUNTR (START, NEXT, HEAD, NELEMS)

RETURN
END

86

SUBROUTINE CHEKER(HEAD, START1, START2, PTR1, PTR2, PTR3, BETA)
C **

C AS POINTERS MOVE ALONG THE CHARACTER STRING DURING CANCELLATION THIS
C SUBROUTINE CHECKS TO DETERMINE WHETHER OR NOT THE END OF ONE
C SUBSTRING IS REACHED AND A NEW ONE BEGINS. DEPENDING ON THE OUTCOME
C OF THIS CHECK, THE POINTERS USED TO IDENTIFY THE BEGINNING OF THE
C TWO LATEST ALPHA STRINGS AND THE LATEST BETA STRING ARE UPDATED

C INPUT: HEAD() ARRAY AND PRESENT POINTER LOCATIONS FROM 'CANCEL'
C SUBROUTINE

C OUTPUT: MODIFIED INDICES FOR LOCATION OF ALPHA AND BETA STRINGS

INTEGER HEAD(1000), START1, START2, PTR1, PTR2, PTR3, CHECK, BETA

CHECK = HEAD(PTR3) * HEAD(PTR2)

IF (CHECK.GT.O) THEN
IF (HEAD(PTR2).LT.O.AND.HEAD(F'TR1).GT.O) START2 = PTR2
IF (HEAD(PTR2).GT.O.AND.HEAD(PTR1).LT.O) BETA PTR2

ELSEIF (CHECK.LE.0) THEN
IF (HEAC(PTR2).GT.O.AND.HEA(PTR1).LT.O) THEN

BETA = PTR2
START1 = START2
START2 = PTR3

ELSEIF (HEAD(PTR2).GT.O) THEN
IF (START1.NE.1) THEN

START1 = START2
START2 = PTR3

ELSE
START1 = PTR3
START2 = START1

ENDIF
ELSEIF (HEAD(PTR2).LT.O.AND.HEAD(PTR1).GT.O) THEN

BETA z PTR3
START1 = START2
START2 = PTR2

ELSEIF (HEAD(PTR2).LT.O.AND.HEAD(PTR1).LT.0) THEN
BETA PTR3

ENDIF
ENDIF

RETURN
END

87

SUBROUTINE MERGE(HEAD, NEXT, STARTI, START2, PRED)

C THIS SUBROUTINE MERGES TWO ORDERED ALPHA STRINGS. THE RESULTING
C SUBSTRING WILL BE INCREASING IN ABSOLUTE VALUE.

C INPUT: HEADO, NEXT() AND PRED() ARRAYS ALONG WITH INDICES STARTI
C AND START2 INDICATING BEGINNING OF THE ALPHA STRINGS TO BE
C MERGED

C OUTPUT: MODIFIED STRING CONTAINING THE MERGED ALPHA STRINGS WHICH
C WERE A RESULT OF ANNHILATION OF A BETA STRING

INTEGER HEAD(1000), NEXT(1000), START1, START2, P1, P2, TAIL,
+ PRED(1000)
LOGICAL GO

IF (START1.EQ.1) GO TO 2

IF(HEAD(PRED(START1)).EQ.0) START1 = NEXT(PRED(START1))

IF(NEXT(PRED(START1)).NE.START1)THEN
START1 = NEXT(PRED(START1))

7 IF (STARTI.EQ.1) GO TO 2
IF(HEAD(START1).GT.O)THEN

START1 = NEXT(START1)
00 TO 7

ENDIF
8 IF(HEAD(PRED(START1)).LT.O)THEN

START1 = PRED(START1)
GO TO 8

ENDIF
ENDIF

2 CALL SET(HEAD, NEXT, START1, START2, P1, P2, TAIL, PRED)

1 IF(GO(P1, P2, START2, HEAD, NEXT)) THEN
CALL MERGER(HEAD, NEXT, P1, P2, TAIL, PRED)

GOTO 1
ENDIF

CALL FXTAIL(HEAD, NEXT, P1, P2, TAIL, START2, PRED)

RETURN
END

88

SUBROUTINE SET(HEAD, NEXT, START1, START2, P1, P2, TAIL, PRED)
C ***********************************

C SETS THE STARTING POINTER OF THE NEW STRING AND THE TWO2 POINTERS
C OF THE STRINGS TO BE MERGED

C INPUT: POINTERS INTO TWO ALPHA STRINGS

C OUTPUT: POINTER INTO BEGINNING OF A NEW SORTED STRING

INTEGER HEAD(1000), NEXT(1000), START1, START2, P1, P2,TAIL,
+ PRED(1000)

P1 START1
P2 =START2
IF(HEAD(P1).GT.HEAD(P2)) THEN

TAIL =P1
START1 P1
P1 NEXT(Pl)

ELSE
TAIL =P2
START1 P2
NEXT(PRED(P1)) = P2
PRED(P2) = PRED(P1)
P2 =NEXT(P2)

END IF

RETURN
END

89

LOGICAL FUNCTION GO(P1, P2, START2, HEAD, NEXT)

C LOGICAL FUNCTION TO DETERMINE WHEN THE END OF EITHER LIST IS REACHED

C INPUT: POINTERS INTO TWO ALPHA SUBSTRINGS

C OUTPUT: LOGICAL VARIABLE WHICH IS TRUE IF EITHER POINTER IS AT THE
C END OF A STRING, AND FALSE OTHERWISE

INTEGER HEAD(1000), NEXT(1000), P1, P2, START2

GO = .TRUE.

IF(Pl .EQ.START2)THEN
GO = .FALSE.
RETURN

END I F

IF(NEXT(P2).EQ.O)THEN
GO = .FALSE.
RETURN

END I F

IF(HEAD(P2).GT.O)THEN

GO = .FALSE.
RETURN

END IF

RETURN
END

90

SUBROUTINE MERGER(HEAD, NEXT, P1, P2, TAIL, PRED)
C **

C THIS SUBROUTINE COMPARES TWO ELEMENTS - ONE IN EACH ALPHA SUBSTRING
C AND PLACES THE ONE THAT IS THE SMALLEST ON THE LIST REPRESENTING THE
C NEW SORTED LIST

C INPUT: HEAD, NEXT, PRED, AND POINTERS INTO THE HEAD ARRAY

C OUTPUT: HEAD, NEXT, PRED, AND POINTERS FOR THE NEXT TWO ELEMENTS
C TO BE CHECKED

INTEGER HEAD(1000), NEXT(1000), Pl, P2, TAIL , PRED(1000)

IF(HEAD(P1).GT.HEAD(P2)) THFN
CALL TACON1(NEXT, P1, TAIL, PRED)

ELSE
CALL TACON2(NEXT, P2, TAIL, PRED)

ENDIF

RETURN
END

SUBROUTINE TAOON1 (NEXT, P1, TAIL, PRED)

C ADDS THE ELEMENT TO WHICH P1 POINTS TO THE TAIL OF THE NEW STRING

C INPUT: NEXT, PRED, P1, TAIL

C OUTPUT: NEXT, PRED, P1, TAIL

INTEGER NEXT(1000), P1, TAIL, PRED(1000)

NEXT(TAIL) = P1
PRED(P1) = TAIL
TAIL = P1
P1 = NEXT(P1)

RETURN
END

91

SUBROUTINE TACON2 (NEXT, P2, TAIL, PRED)
C ***********************************

C ADDS THE ELEMENT TO WHICH P2 POINTS TO THE TAIL OF THE NEW STRING

C INPUT: NEXT, PRED, P2, TAIL

C OUTPUT: NEXT, PRED, P2, TAIL

INTEGER NEXT(1000), P2, TAIL, PRED(1000)

NEXT(TAIL) = P2
PRED(P2) = TAIL
TAIL =P2
P2 =NEXT(P2)
RETURN
END

92

SUBROUTINE FXTAIL(HEAD, NEXT, P1, P2, TAIL, START2, PRED)
C ***********************************

C ATTACHIES THE END OF THE LONGER SORTED STR ING TO THE END OF THE MERGED

C STRING

C INPUT: ,P2, HEAD, NEXT, PRED, TAiL

C OUTPUT: P1, P2, HEAD, NEXT, PRED, TAIL, START2

INTEGER HEAD(1000), NEXT(1000), P1, P2, TAIL, START2, P11,
+ PRED(1000)

IF(P1 .EQ.START2)THEN
CALL TACO)N2(NEXT, P2, TAIL, PRED)
RETURN

END IF

IF(NEXT(P2) .EQ.O)THEN
CALL TAOON1(NEXT, P1, TAIL, PRED)
P11 TAIL

2 IF(P1.NE.START2)THEN
P11 Ill
P1 NEXT(P1)

GOTO 2
END IF
NEXT(Pll) P2
PRED(P2) P11
RETURN

END IF

IF(HEAD(P2) .GT.0)THEN
CALL TA'XN1(NEXT, P1, TAIL, PRED)
P11 = TAIL

3 IF(P1.NE.START2) THEN
P11 P1
P1 NEXT(P1)
GOTO 3

END IF
NEXT(Pll) P2
PRED(P2) =P11
RETURN

END IF

RETURN
END

93

SUBROUTINE CTREX(FL, NL, PL, FR, NR, PR, BSEED, PSEED)
C ***********************************

C THIS SUBROUTINE CHIECKS F(C(R(P))) AGAINST K(F(R(P))) FOR EQUALITY.

C INPUT: FUNDAMENTAL GROUP REPRESENTATIONS FOR BOTH ALGRITHMfS

C OUTPUT: MESSAGE I ND ICATI NG THE OCCURRENCE OF UNEQUAL FUNDAMENTAL
C GROUPS

INTEGER FL(1000), NL(1000), PL(1000), FR(1000), NR(1000), PR(1000)

IF(NL(1).EQ.0.AND.NR(l).EQ.0) GOE TO 11

I =NL(l)
J =NR(1)

10 IF (I.EQ.O.AND.J.EQ.0) GOTO 11

IF (FL(I).EQ.0.ANlD.FR(J).EQ.0) GO) TO 11

IF (FL(I).EQ.FR(J)) THEN
I =NL(I)
J =NR(J)
GOTO 10

ELSE
PRINT*,'STRINGS UNEQUAL'
PRINT*,

*
IF(NL(l).EQ.0)THEN

PRINT*,'THE GROUP IS EMPTY AFTER ALG1 SEQUENCE'
ELSE

PRINT*,'THE FUNDAMENTAL GROUP AFTER ALGi IS:'
CALL PRINTS(FL,NL)

END IF
IF(NR(1).EQ.0) THEN

PR INT*, 'THE GROUP I S EMPTY AFTER ALG2 SEQUENCE'
ELSE

PRINT*,'THE FUNDAMENTAL GROUP AFTER ALG2 IS.'
CALL PRINTS(FR,NR)

ENDI F
PRINT*,'
PRINT*,'BSEED AND PSEED ARE' ,BSEED,PSEED

END IF

11 RETURN
END

94

SUBROUTINE PRINTS(HEAD, NEXT)
C * * * * * * * * *** * ** *

C THIS SUBROUTINE CAN BE USED TO PRINT OUT ANY STRING THAT IS STORED IN
C LINK LIST FORM

C INPUT: LINK LIST ARRAYS

C OUTPUT: HORIZONTAL STRING OF THE ELEMENTS ACCORDING TO THE NEXT()

INTEGER HEAD(1000), NEXT(1000), STRING(1000)

NSTART = NEXT(l)

98 IF(NSTART.NE.Q) THEN
I=1+1

STRING(I) = HEAD(NSTART)
NSTART = NEXT(NSTART)
GOTO 98

ENDIF

PRINT 111, (STRING(J), J = 1, I)
111 FORMAT(' ',2014)

PRINT*,'

RETURN
END

95

C ALL SUBROUTINES BELOW~ THIS POINT WERE USED AS DEBUG TOOLS. THEY
C GENERATE CRUDE GRAPHS WH ICH PLOT THE BOARDS AND THE PATHS.
C THE VALUES AQU IRED BY THE RAWSTR ING , MERGE, AND MANY OTHER
C SUBROUTINES WERE CHIECKED USING THESE ROUTINES.
C ***********************************

SUBROUTINE GRAPH(BX, BY, X, Y, NOBS, NUtIPTS)
C ***********************************

REAL*8 X(1000), Y(1000), BX(1000), BY(1000)
O-IARACTER*l MATR(53, 105)

CALL GRAFPA(X, Y, NL#IPTS, MATR)
CALL (RAFOB(BX, BY, NOBS, MATR)

DO 1 I 1,53
1 PRINT 111, (MATR(J,J), J=1,105)

111 FORMAT(' ',105A1)

RETURN
END

96

SUBROUTINE GRAFPA (X, Y, NiJIPTS, MATR)
C ***********************************

REAL*8 X(1000), Y(1000)
CHARACTER*1 MATR(53, 105), OH

DO 10 L =2,52
Do 10 M =2,104

10 MATR(L,M)

DO 1 1 = 1, 105
MATR(l,I)=

1 MATR(53,I)

DO04 1I 1, 53
MATR(I,l)=

4 MATR(1,105)

XK =X(l)
YK = Y(l)
CALL COOR(XK, YK, IX, IY)
CALL CHARPA(1, OH)
MATR(IY,IX) = H

DO 2 K =2,NUMPTS
2 CALL FILL(K, X, Y, MATR)

DO 3 K = 2,NUMPTS
XK =X(K)
YK =Y(K)
CALL (xOR(XK, YK, IX, IY)
CALL CHiARPA(K, CH)

3 MATR(IY, IX) =OH

RETURN
END

SUBROUTINE COOR(BX, BY, IX, IY)
C ***********************************

REAL*8 BX, BY

IX = MESHP(BX) * 2
IY = 54 - MESHP(BY)

RETURN
END

97

INTEGER FUNCTION MESHP(X)
C ***********************************

REAL*8 X

MESHP =((X+1.)*(51./2.)) +2.

RETURN
END

SUBROUTINE CHARPA(K, CHi)
C ***********************************

CHARACTER*l CH

IF(K.EQ.1) THEN
OH 'A'
RETURN

END IF

IF(K.EQ.2) THEN
CH = B'
RETURN

END IF

IF(K.EQ.3) THEN
OH =,C'
RETURN

END IF

IF(K.EQ.4) THEN
OH= D
RETURN

END IF

IF(K.EQ.5) THEN
CH ='E
RETURN

END IF

IF(K.EQ.6) THEN
(>1 = 'A'
RETURN

ENt'IF

END

98

SUBROUTINE FILL(K, X, Y, MATR)
C ***********************************

REAL*8 X(1000), Y(1000), U, V, DX, DY, XK, YK, XKM1, YKM1
CH-ARACTER*l ttATR(53, 105)

XK = X(K)
YK =Y(K)
XKM1 =X(K-1)
YKM1 =Y(K-1)

CALL (XOOR(\K, YK, KX, KY)

CALL C0OR(XKM1, YKM1, KXJI1, KYM1)

L =IABS(KX - KXM1) - 1
M =IABS(KY - KYMi) - 1
IF (M.GT.L) L =M
DX = (XK -XKM1)/(L+l)

DY =(YK -YKM1)/(L+l)

DO 1 J 1,L
U zXKM1 + J*DX
V =YKM1 + J*DY
CALL OOR(U,V, (U, IV)

1 MATR(IV, IU)

RETURN
END

SUBROUTINE GRAFOB (X, Y, NOBS, MATR)
C ***********************************

REAL*8 X(1000), Y(1000)
CHARACTER*1 MATR(53, 105), aCH

MATR(27, 53)

DO 2 K =1,NOBS
XK = X(K)
YK = 'K

CALL COOR(XK, YK, IX, IY)
CALL O-IAR(K, CHi)

2 MATR(IY, IX) = CHi

RETURN
END

99

SUBROUTINE CHAR(K, CH)
C ***********************************

CHARACTER*l CHI

IF(K.EQ.1) THEN
CH= 1

RETURN
END IF

IF(K.EQ.2) THEN
10H= 2
RETURN

END IF

IF(K.EQ.3) THEN
OH =-3
RETURN

ENDI1F

IF(K.EQ.4) THEN
CH- -
RETURN

END IF

IF(K.EQ.5) THEN
OcH= 5

RETURN
END IF

IF(K.EQ.6) THEN

OH= 6
RETURN

END IF

IF(K.EQ.7) THEN
OH ='7'
RETURN

END IF

IF(K.EQ.8) THEN
OH=-8
RETURN

END IF

IF(K.EQ.9) THEN
OH ='9'
RETURN

END IF

IF(K.EQ. 10) THEN
IOH= @

RETURN

100

END I F

IF(K.EQ.11) THEN
CH-=
RETURN

END IF

IF(K.EQ. 12) THEN
IcH =Is

RETURN
END IF

IF(K.EQ. 13) THEN
CH = %

RETURN
ENDI F

IF(K.EQ. 14) THEN
OH=
RETURN

END IF

IF(K.EQ.15) THEN
IcH =It

RETURN
ENDI F

IF(K.EQ.16) THEN
CH = '
RETURN

END IF

IF(K.EQ. 17) THEN
OH='\
RETURN

END IF

IF(K.EQ.18) THEN
CH= <
RETURN

END IF

IF(K.EQ. 19) THEN
OH= >
RETURN

END IF

IF(K.EQ.20) THEN
OH
RETURN

ENDI F
END

101

APPENDIX B. A SMALL EXAMPLE

Given the following five classes (pictured in Figure B.1)

as candidates for the class containing the true shortest path:

We formulate a lower bound for each class.

2. a2B1

3. ek12

4. a2BIc23 2

5 . 0 tl ' 2 (k 1

2 3

4 5

Figure B.1 The Five Classes Associated With Two Obstacles

102

Consider the class 1132 pictured below in Figure B.2.

l1

Figure B.2 The Class a,132

To formulate the lower bound for each class we first

shrink the obstacles down to a point (Figure B.3). In order

to cross a2 we develop a cone of directions (Figure B.3) in

which the first segment of the bounding polygonal path must

lie. P zP

b1

C

a

Figure B.3 The Cone of Directions Associated With a,

103

This cone is then intersected with the one associated with an

02 crossing pictured in Figure B.4.

Figure B.4 Cone Associated With B 2

The resulting cone of directions is denoted by the double arc

in Figure B.5.

z P2

a2 a 1

Figure B.5 The Intersected Cone

104

Since we have reached the end of the class name we check

to see if z lies in this cone of directions. If z lies in the

cone we go directly to z. Otherwise, we determine which side

of the cone z lies so that we can find the peg on which the

path bends.

In this example, z does not lie in the final cone of

directions so the path bends at the point bI . Thus the

bounding path is made of two line segments. One from a to b2

and the other from b2 to z (Figure B.6).

z13
1C

a2 y 1

Figure B.6 The Bounding Path for the Class a, 2

A similar procedure is done on each of the remaining four

classes yielding the following lower bounds:

1. ale 2 : 1.5231

2. B,3} : 1.5303

3. : 2.2885

4. 8, ,3. : 3.2885

5. 3liaf 13 : 2.7008

105

This list is then put into increasing order:

.- eka 2 : 1.5231

2. a 2B1 : 1.5303

3. al3 2 2.2885

4. aj3 2.7008

5. a 2 .ic 2B 2 : 3.2885

Now the first class on this ordered list is chosen. To 4

find the true shortest path we expand the obstacles back to

their original shape. If the path bends on a peg, then a

tangent line is constructed from a start point to the correct

side of the obstacle (Figure B.7).

z 0

Figure B.7 A Tangent Line From a to B2

In the class af32, we must draw a tangent line from a to

b2 initially. The point of tangency on B2 can be found by

using the formulas developed in Chapter V of this paper. We

then travel around the obstacle until a line tangent to B2 can

be drawn to z (Figure B.8).

106

aa

Figure B.8 The Shortest Path in the Class ai3B,

Throughout this process the lengths of the line segments

and the arc lengths representing the distance traveled around

the obstacles is summed. The final sum is the length of the

true shortest path for the respective class.

If the shortest path in a class is smaller than the lower

bound on the next class to be considered, then the search

stops. In this example the search stops after the first class

is checked since the length of aea2 is 1.8793 and the length

of aB, is 1.9032.

107

LIST OF REFERENCES

1. Willard, S., General Topology, Addison-Wesley Publishing
Company, 1970.

2. Thornton, J. R., Algebraic Names for Homotopy Classes of
Paths in a Plane With Obstacles: A Foundation for the
Shortest Path Problem, NPS Technical Report, Unpublished.

3. Jenkins, K. D., The Shortest Path Problem in the Plane
With Obstacles: A Graph Modeling Approach to Producing
Finite Search Lists of Homotopy, Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1991.

4. Patterson, E. M., Topology, p. 74, Interscience
Publishers, Inc., 1963.

5. Thornton, J. R., Two Problems Concerning Robot Arms:
Product-Automation-Based Control Among Obstacle and
Recursive Optimization on a Hypercube Compute, Doctoral
Dissertation, Clemson University, Clemson, South Carolina,
May 1989

108

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Professor John Thornton, Code MA Th 3
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943-5000

4. Professor Kim Hefner, Code MA Hk
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943-5000

5. Chairman, Code MA
Department of Mathematics
Naval Postgraduate School
Monterey, CA 93943-5000

6. CPT Andre M. Cuerington 3
919 28th Avenue
East Moline, IL 61244

7. CAPT Kevin D. Jenkins
712 Lisburn Road
Camp Hill, PA 17011

109

